
11

A Programmable Memory Controller for the DDRx
Interfacing Standards

MAHDI NAZM BOJNORDI and ENGIN IPEK, University of Rochester

Modern memory controllers employ sophisticated address mapping, command scheduling, and power man-
agement optimizations to alleviate the adverse effects of DRAM timing and resource constraints on system
performance. A promising way of improving the versatility and efficiency of these controllers is to make
them programmable—a proven technique that has seen wide use in other control tasks, ranging from DMA
scheduling to NAND Flash and directory control. Unfortunately, the stringent latency and throughput re-
quirements of modern DDRx devices have rendered such programmability largely impractical, confining
DDRx controllers to fixed-function hardware.

This article presents the instruction set architecture (ISA) and hardware implementation of PARDIS,
a programmable memory controller that can meet the performance requirements of a high-speed DDRx
interface. The proposed controller is evaluated by mapping previously proposed DRAM scheduling, address
mapping, refresh scheduling, and power management algorithms onto PARDIS. Simulation results show
that the average performance of PARDIS comes within 8% of fixed-function hardware for each of these
techniques; moreover, by enabling application-specific optimizations, PARDIS improves system performance
by 6 to 17% and reduces DRAM energy by 9 to 22% over four existing memory controllers.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; C.5.3 [Computer System
Implementation]: Microprocessors; B.1.5 [Control Structures and Microprogramming]: Microcode
Applications

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Programmable, memory controller

ACM Reference Format:
Bojnordi, M. N. and Ipek, E. 2013. A programmable memory controller for the DDRx interfacing standards.
ACM Trans. Comput. Syst. 31, 4, Article 11 (December 2013), 31 pages.
DOI: http://dx.doi.org/10.1145/2534845

1. INTRODUCTION

The off-chip memory subsystem is a significant performance, power, and quality-
of-service (QoS) bottleneck in modern computers, necessitating a high-performance
memory controller that can overcome DRAM timing and resource constraints by orches-
trating data movement between the processor and main memory. Contemporary DDRx
memory controllers implement sophisticated address mapping, command scheduling,
power management, and refresh algorithms to maximize system throughput and
minimize DRAM energy, while ensuring that system-level QoS targets and real-time
deadlines are met. The conflicting requirements imposed by this multiobjective

This work is supported in part by the National Science Foundation under grant CCF-1217418.
Authors’ addresses: M. N. Bojnordi, Electrical and Computer Engineering Department, University of
Rochester; email: bojnordi@ece.rochester.edu; E. Ipek, Electrical and Computer Engineering Department,
University of Rochester.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0734-2071/2013/12-ART11 $15.00

DOI: http://dx.doi.org/10.1145/2534845

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:2 M. N. Bojnordi and E. Ipek

optimization, compounded by the diversity in both workload and memory system char-
acteristics, make high-performance memory controller design a significant challenge.

A promising way of improving the versatility and efficiency of a memory controller
is to make the controller programmable; indeed, programmability has proven useful in
the context of other complex control tasks from DMA scheduling [Martin et al. 2009;
Kornaros et al. 2003] to NAND Flash [Micron Technology, Inc. 2009b] and directory
control [Kuskin et al. 1994; Reinhardt et al. 1994; Carter et al. 1999; Browne et al.
1998; Agarwal et al. 1995; Firoozshahian et al. 2009]. In these and other architectural
control problems, programmability allows the controller to be customized based on
system requirements and performance objectives, makes it possible to perform in-field
firmware updates to the controller, and enables application-specific control policies.
Unfortunately, extending such programmability to a DRAM controller is complicated
by the stringent latency and throughput constraints of DDRx protocols, which currently
operate at data rates in excess of 10GB/s per channel. As a result, contemporary
memory controllers are invariably confined to implementing DRAM control policies in
ASIC-like, fixed-function hardware blocks.

This article presents PARDIS, a programmable memory controller that provides
sufficiently high performance to make the firmware implementation of DDRx control
policies practical. PARDIS divides the tasks associated with high-performance DRAM
control among a request processor, a transaction processor, and dedicated command
logic. The request and transaction processors each have a domain-specific ISA for
accelerating common request and memory transaction processing tasks, respectively.
The timing correctness of the derived schedule is enforced in hardware through dedi-
cated command logic, which inspects—and if necessary, stalls—each DDRx command
to DRAM to ensure that all DDRx timing constraints are met. This separation between
performance optimization and timing correctness allows the firmware to dedicate re-
quest and transaction processor resources exclusively to optimizing performance and
QoS, without expending limited compute cycles on verifying the correctness of the
derived schedule.

Synthesis results on a complete RTL implementation of the PARDIS system indicate
that the proposed controller occupies less than 1.8mm2 of area and consumes less
than 152mW of peak power at 22nm. Four command scheduling policies, an address
mapping technique, a refresh scheduling mechanism, and a recently proposed power
management algorithm are implemented in firmware and mapped onto PARDIS for
evaluation; when averaged over a set of 13 scalable parallel applications, PARDIS
achieves performance and DRAM energy within 8% of fixed-function hardware for each
of these techniques. Furthermore, by enabling application-specific address-mapping
optimizations, PARDIS improves performance by 6 to 17% and DRAM energy by 9 to
22% over four existing memory controllers.

2. BACKGROUND AND MOTIVATION

Modern DRAM systems are organized into a hierarchy of channels, ranks, banks, rows,
and columns to exploit locality and parallelism. Contemporary high-performance mi-
croprocessors commonly integrate two to four independent memory controllers, each
with a dedicated DDRx channel. Each channel consists of multiple ranks that can be
accessed in parallel, and each rank comprises multiple banks organized as rows ×
columns, sharing data and address buses. A set of timing constraints dictate the min-
imum delay between each pair of commands issued to memory; maintaining high
throughput and low latency necessitates a sophisticated memory controller that can
correctly schedule requests around these timing constraints.

A DDRx memory controller receives a request stream consisting of reads and writes
from the cache subsystem, and generates a corresponding DRAM command stream.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:3

Fig. 1. Illustrative example of PARDIS in a computer system.

Every request requires accessing multiple columns of a row within DRAM. A row
needs to be loaded into a row buffer by an activate command prior to a column access.
Consecutive accesses to the same row, called row hits, enjoy the lowest access latency,
whereas a row miss necessitates issuing a precharge command to precharge the bitlines
within the memory array, and then loading a new row to the row buffer using an activate
command.

3. OVERVIEW

Figure 1 shows an example computer system consisting of a multicore processor with
PARDIS, interfaced to off-chip DRAM over a DDR3 channel. PARDIS receives read and
write requests from the last-level cache controller, and generates DDR3 commands
to orchestrate data movement between the processor and main memory. Internally,
PARDIS is comprised of a request processor, a transaction processor, and command
logic. These three tightly-coupled processing elements work in tandem to translate
each memory request to a valid sequence of DDR3 commands.

3.1. Request Processor

Upon arrival at the memory controller, each request is enqueued at a FIFO request
queue that interfaces to the request processor. The job of the request processor is to
dequeue the next request at the head of the request queue, to generate a set of DRAM
coordinates—channel, rank, bank, row, and column IDs—for the requested address, and
to enqueue a new DDRx transaction with the generated coordinates in a transaction
queue. Hence, the request processor represents the first level of translation—from
requests to memory transactions—in PARDIS, and is primarily responsible for DRAM
address mapping.

3.2. Transaction Processor

The transaction processor operates on the DDRx transactions that the request proces-
sor enqueues in the transaction queue. The primary job of the transaction processor is
to track the resource needs and timing constraints for each memory transaction, and
to use this information to emit a sequence of DDRx commands that achieves perfor-
mance, energy, and QoS goals. The transaction processor’s ISA is different from the
request processor’s, and offers several important capabilities. A subset of the instruc-
tions, called transaction management instructions, allows the firmware to categorize
memory requests based on the state of the memory subsystem (e.g., requests that need
a precharge), the request type (e.g., a write request), and application-specific criteria
(e.g., thread IDs) to derive a high-performance, efficient command schedule. A sec-
ond subset of the instructions, called command management instructions, allows the
firmware to emit either the next required command for a given transaction (e.g., an acti-
vate command to a particular row), or a new command for various DRAM management
purposes (e.g., power-management or refresh scheduling).

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:4 M. N. Bojnordi and E. Ipek

Fig. 2. Data types supported by the request processor.

3.3. Command Logic

The purpose of the command logic is to inspect the generated command stream, to
check, and if necessary, to stall, the command at the head of the command queue to
ensure all DDRx timing constraints are met, and to synchronize the issue of each
command with the DDRx clock. The command logic is not programmable through an
ISA; nevertheless, it provides configurable control registers specifying the value of each
DDRx timing constraint, thereby making it possible to interface PARDIS to different
DDRx systems. Since the command logic enforces all timing constraints and guaran-
tees the timing correctness of the scheduled command stream, it becomes possible to
separate timing correctness from performance optimization.

4. INSTRUCTION SET ARCHITECTURE

Programming PARDIS involves writing code for the request and transaction proces-
sors, and configuring the control registers specifying DDRx timing constraints to the
command logic.

4.1. Request Processing

The request processor is a 16-bit RISC architecture with separate instruction and data
memories (i.e., a Harvard architecture). The primary goals of the request processor are
address mapping and translating each request to a DDRx transaction; to achieve these
goals, the request processor provides specialized data types, storage structures, and
instructions for address manipulation.

4.1.1. Data Types. Request processing algorithms are dominated by arithmetic and
logical operations on memory addresses. Two data types, an unsigned integer and a
request, suffice to represent the information used in these algorithms (Figure 2). An
unsigned integer is 16 bits wide, and can be used by every instruction except jumps.
A request is 64 bits wide, comprising a 48-bit address and a 16-bit metadata field
recording information about the DRAM request: the type of memory operation (read or
write), the destination cache type (data or instruction), whether the access is initiated
by a load miss, the owner thread’s ID, whether the request is a prefetch, and other
application-specific priority flags.

4.1.2. Storage Model. Programmer-visible storage structures within the request pro-
cessor include the architectural registers, the data memory, and the request queue.
The request processor provides 32 architectural registers (R0-R31); of these, one (R0)
is hardwired to zero; four (R1-R4) are dedicated to reading a 64-bit request from the
request queue; and four (R5-R8) are used for temporarily storing a transaction until
it is enqueued at the transaction queue. The data memory has a linear address space
with 16-bit data words, indexed by a 16-bit address.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:5

Fig. 3. Instruction formats supported by the request processor.

Table I. Four Different Types of Instructions Supported by the Request Processor

Instruction/Flag Operation Description

ADD Rd, Rs1, Rs2 Rd ← Rs1 + Rs2 Addition
SUB Rd, Rs1, Rs2 Rd ← Rs1 − Rs2 Subtraction

Arithmetic SLL Rd, Rs1, Rs2 Rd ← Rs1 � Rs2 Shift Left Logically
and SRL Rd, Rs1, Rs2 Rd ← Rs1 � Rs2 Shift Right Logically

Logical AND Rd, Rs1, Rs2 Rd ← Rs1 ∧ Rs2 bitwise AND operation
OR Rd, Rs1, Rs2 Rd ← Rs1 ∨ Rs2 bitwise OR operation
XOR Rd, Rs1, Rs2 Rd ← Rs1 ⊕ Rs2 bitwise XOR operation
NOT Rd, Rs1 Rd ← ¬Rs1 bitwise NOT operation

Memory LD Rd, Rs1, Vim Rd ← MEM[Rs1 + Vim] Load Data
Access SD Rs1, Rs2, Vim MEM[Rs2 + Vim] ← Rs1 Store Data

BEQ Rs1, Rs2, Vim i f (Rs1 = Rs2) Branch if Equal
PC ← Vim

Control BNEQ Rs1, Rs2, Vim i f (Rs1 �= Rs2) Branch if Not Equal
Flow PC ← Vim

JMP Vim PC ← Vim Jump
BTQE Vim i f (T Q.empty = true) Branch if the Transaction

PC ← Vim Queue is empty

Queue -R R1...4 ← RQ[head] Request read
Access -T T Q[tail] ← R5...8 Transaction write

Rd: destination register, Rs1: source register 1, Rs2: source register 2, Vim: immediate value
MEM: data memory, PC: program counter, RQ: request queue, TQ: transaction queue

4.1.3. Instructions. As depicted in Figure 3, the request processor supports 32-bit in-
structions with one, two, or three operands represented by two instruction formats.
Table I shows all of the supported request processing instructions.

Arithmetic and logical instructions. Supported ALU operations include addition, sub-
traction, logical shifts, and bitwise logical operations. All ALU instructions can use any
of the 32 architectural registers as an input operand; however, registers R0 to R4 are
not writable by the ALU instructions. (R0 is hardwired to zero, whereas R1-R4 are
dedicated to reading read memory requests from the request queue.)

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:6 M. N. Bojnordi and E. Ipek

Memory access instructions. Only loads and stores access the data memory, and
only the displacement addressing mode (16-bit immediate + register) is supported for
simplicity.

Control flow instructions. The request processor supports both jumps and branches.
Possible branch conditions that can be tested are equality and inequality between two
registers, and whether the transaction queue is empty. State of the transaction queue
is useful for context switching between control policies at the request processor. The
target address of a branch is a 16-bit immediate value, which is an absolute address to
the instruction memory.

Queue access flags. All queue access operations in the request processor are per-
formed using instruction flags. The firmware needs a mechanism for dequeuing re-
quests from the request queue and enqueuing transactions at the transaction queue.
To fulfill this need, request processing instructions are equipped with two flags called
“R” and “T”. An instruction annotated with the R flag dequeues the request at the head
of the request queue, and loads the request fields into registers R1-R4 prior to exe-
cution; likewise, after an instruction annotated with the T flag executes, it enqueues
a new transaction based on the contents of registers R5-R8 at the transaction queue.
Hence, a typical sequence of instructions for processing a request involves (1) copying
different fields of the 64-bit request into general-purpose registers with the R flag;
(2) operating on these fields to compute channel, rank, bank, row, and column IDs;
and (3) copying the resulting transaction fields from the register file to the transaction
queue with the T flag. A single instruction is allowed to be annotated with both R and
T flags, in which case it dequeues a request, operates on it, and enqueues a transaction
based on the contents of R5-R8. After a request is dequeued from the request queue, its
fields are available for processing in the register file; therefore, all request processor
instructions can operate on each of the four fields of a request.

4.2. Transaction Processing

The transaction processor implements a 16-bit RISC ISA with split instruction and
data memories, and is in charge of command scheduling and DRAM management.
These tasks require sophisticated instructions and necessitate a more powerful ISA
than that of the request processor.

4.2.1. Data Types. In addition to a basic 16-bit unsigned integer, the transaction pro-
cessor defines two new data types called a transaction and a command. A transaction
consists of three fields: an address, a fixed key (f-key in Figure 4), and a variable key
(v-key in Figure 4). The address field is 48 bits wide and is in DRAM-coordinate format,
where the least significant bits represent the byte offset, the next few bits represent
the page ID, and so on (Figure 8). The fixed and variable key fields are used for per-
forming associative lookups on the outstanding transactions in the transaction queue.
For example, it is possible to search the fixed key fields of all outstanding transactions
to identify those transactions that are due to cache-missing loads. A fixed key is written
by the request processor, and is read-only and searchable within the transaction pro-
cessor. The variable key reflects the state of a transaction based on timing constraints,
resource availability, and the state of the DRAM system. The variable key makes it
possible, for example, to search for all transactions whose next command is a precharge
to a specific bank. The variable key consists of two disjoint parts called the hardware
managed and software managed regions. The hardware managed region comprises a
valid bit (V); three flags indicating the next valid DRAM command for the transaction
(i.e., a read/write, precharge, or activate); and a programmed ready bit (RDY). The
hardware managed region is automatically updated by hardware each cycle, whereas

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:7

Fig. 4. Data types supported by the transaction processor.

the software managed region can only be modified by a dedicated instruction that
overwrites its fields.

The request processor may enqueue new transactions while the transaction processor
is working on one iteration of a scheduling loop. To prevent these new transactions
from interfering with the ongoing policy computation, the transaction processor uses
theâ busy flag (B) that marks the transactions that are currently being worked on.
Associative search instructions include this flag in their search key to avoid interference
from the request processor.

A command consists of two fields called address and type. The command can be a
DRAM data transfer command such as a read, write, precharge, or activate, a power
management command such as power up or power down, a refresh command, or a
special “sleep” command that is interpreted by the command logic as a multicycle
throttling request for active power management.

4.2.2. Storage Model. The transaction processor provides the programmer with regis-
ter, data memory, transaction queue, and command queue storage abstractions. The
processor has 64 general-purpose registers (R0-R63), with R0 hardwired to zero. In
addition, the processor provides 64 special-purpose registers (S0-S63) bundled as an
array of counters for implementing timer-based interrupts and statistics counters for
decision making. Both the instruction and data memories are accessed by 16-bit ad-
dresses, which results in address space sizes of 64KB each. The transaction processor
accesses the outstanding transactions in the transaction queue via associative search
instructions, and generates a command sequence to be enqueued at the command
queue.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:8 M. N. Bojnordi and E. Ipek

Fig. 5. Instruction formats supported by the transaction processor.

4.2.3. Instructions. The transaction processor provides 32 instructions, comprising
ALU, control flow, memory access, interrupt processing, and queue access operations.
The transaction processor provides three instruction formats (Figure 5), which allow
an instruction to use up to three operands (register specifiers and an immediate value).

Table II shows all instructions supported by the transaction processor.

Arithmetic and logical instructions. The ISA supports 12 ALU instructions, including
ADD, SUB, MIN, MAX, shifts, and bitwise logical operations.

Memory access instructions. Only loads and stores are permitted to access the data
memory, and the only supported addressing mode is displacement (16-bit immediate +
register).

Control flow instructions. Nine control flow instructions are supported to detect vari-
ous memory system states and events. In addition to conventional jumps and branches,
the ISA provides “branch if the transaction queue is empty” (BTQE); “branch if the com-
mand queue is empty” (BCQE); and “branch if less-than or skip if greater-than” (BLSG)
instructions. BLSG allows the firmware to implement nested if-then-else constructs
with high performance by reducing the number of instruction fetches and overlapping
branch delay slots. (An example usage of this instruction is presented in Section 5.4.)

Interrupt programming instructions. The transaction processor provides 64 pro-
grammable counters which are used for capturing processor and queue states (e.g.,
the number of commands issued to the command queue). Every counter counts up and
fires an interrupt when a preprogrammed threshold is reached. A programmable in-
terrupt counter is written by a “set interrupt counter” (SIC) instruction, and is read by
a “move from special register” (MFSR) instruction. SIC accepts two register specifiers,
and an immediate value specifying the counter ID. One of the two register operands is
the address of the interrupt service routine for handling the interrupt, and the other
register is used for specifying the top counter value, after which the counter interrupt
must fire. By default, the execution of an interrupt service routine cannot be inter-
rupted by any counter. From the time an interrupt fires until its corresponding service
routine executes a “return from an interrupt service routine” (RETI) instruction, any
new interrupts are logged for future processing. The transaction processor, however,
allows the programmer to remove this protection by an “unmask interrupt counters”
(UIC) instruction, and to enable masking interrupts by a “mask interrupt counters”
(MIC) instruction. A counter is read by the MFSR instruction, which moves the value
of the specified counter to a general-purpose register.

Queue access. The transaction processor allows the programmer to search for a given
transaction by matching against fixed and variable keys among all valid transactions

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:9

Table II. Instruction Set Architecture of the Transaction Processor

Instruction/Flag Operation Description
ADD Rd, Rs1, Rs2 Rd ← Rs1 + Rs2 Addition
SUB Rd, Rs1, Rs2 Rd ← Rs1 − Rs2 Subtraction
MIN Rd, Rs1, Rs2 i f (Rs1 < Rs2) Minimum of the two source operands

Rd ← Rs1

else
Rd ← Rs2

Arithmetic MAX Rd, Rs1, Rs2 i f (Rs1 > Rs2) Maximum of the two source operands
and Rd ← Rs1

Logical else
Rd ← Rs2

SLL Rd, Rs1, Rs2 Rd ← Rs1 � Rs2 Shift Left Logically
SRL Rd, Rs1, Rs2 Rd ← Rs1 � Rs2 Shift Right Logically
AND Rd, Rs1, Rs2 Rd ← Rs1 ∧ Rs2 bitwise AND operation
OR Rd, Rs1, Rs2 Rd ← Rs1 ∨ Rs2 bitwise OR operation
XOR Rd, Rs1, Rs2 Rd ← Rs1 ⊕ Rs2 bitwise XOR operation
NOT Rd, Rs1 Rd ← ¬Rs1 bitwise NOT operation

Memory LD Rd, Rs1, Vim Rd ← MEM[Rs1 + Vim] Load Data
Access SD Rs1, Rs2, Vim MEM[Rs2 + Vim] ← Rs1 Store Data

LTQ Rd, Rs1, Rs2 Rd ← T Q.search(Rs1, Rs2) Load from the Transaction Queue
CTQ Rd, Rs1, Rs2 Rd ← T Q.count(Rs1, Rs2) Count matches in the Transaction Queue

Queue UTQ Rs1, Rs2, Vim TQ.update(Rs1, Rs2, Vim) Update the Transaction Queue
Access SRT Rs1 TQ.ready ← Rs1 Set Ready Threshold

LCQ Rd Rd ← CQ.state Load state of the Command Queue
ICQ Rs1 CQ.issue(Rs1) Issue command to the Command Queue
BLT Rs1, Rs2, Vim i f (Rs1 < Rs2) Branch if Less-Than

PC ← Vim

BLSG Rs1, Rs2, Vim i f (Rs1 < Rs2) Branch if Less-than; Skip if Greater
PC ← Vim

elsei f (Rs1 > Rs2)
PC ← PC + 1

BMSK Rs1, Rs2, Vim i f (Rs1 ∧ Rs2) Branch if Masking results is non-zero
Control PC ← Vim

Flow BEQ Rs1, Rs2, Vim i f (Rs1 = Rs2) Branch if Equal
PC ← Vim

BNEQ Rs1, Rs2, Vim i f (Rs1 �= Rs2) Branch if Not Equal
PC ← Vim

BTQE Vim i f (T Q.empty = true) Branch if the Transaction Queue
PC ← Vim is empty

BCQE Vim i f (CQ.empty = true) Branch if the Command Queue
PC ← Vim is empty

JR Rs1 PC ← Rs1 Jump to Register
JMP Vim PC ← Vim Jump
MFSR Rd, Ss1 Rd ← Ss1 Move From Special Register

Ss1 ← 0
Interrupt SIC Sd, Rs1, Vim Sd.setIntCnt(Rs1, Vim) Set Interrupt Counter
Access RETI PC ← IC.return() Return from Interrupt service routine

MIC IC.mask ← true Mask Interrupt Counter
UIC IC.mask ← f alse Unmask Interrupt Counter

Rd: destination register, Rs1: source register 1, Rs2: source register 2, Vim: immediate value
MEM: data memory, PC: program counter, RQ: request queue, TQ: transaction queue
Sd: destination special register, Ss1: source special register 1, IC: interrupt controller

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:10 M. N. Bojnordi and E. Ipek

in the transaction queue; in the case of multiple matches, priority is given to the oldest
matching transaction. Prior to a search, the search key is stored in an architectural
register. If the search key is stored in an even-numbered register, the following odd-
numbered register is used to store a bit mask that determines which bits from the
key should contribute to the search. The most common type of search operation at the
transaction processor involves finding all transaction queue entries with a particular
flag on (e.g., all transactions that need a precharge command). This type of search
requires the same bit pattern for both the key and the mask; as such, a single register
is sufficient to store both the key and the mask. This is made possible by storing the
relevant key in an odd-numbered register. A search operation requires two register
operands specifying the fixed and variable keys, and is typically followed by one of
three actions:

(1) Load transaction. Loading a transaction involves executing a “load transaction
queue” (LTQ) instruction, which writes the next command of the selected trans-
action (Figure 4) to a specified destination register, and the address field to a set
of dedicated address registers. If the search operation preceding LTQ results in a
mismatch, LTQ sets the valid bit (Figure 4) of the command field to zero; future
instructions check this bit to determine if the search has succeeded.

(2) Update transaction. The transaction processor allows the programmer to update
a transaction using the “update transaction queue” (UTQ) instruction. The lower
eight bits of the immediate field of UTQ are written into the software managed re-
gion of the variable key. This allows firmware to classify matches based on decision-
making requirements; for example, the batch-scheduler algorithm in Par-BS [Mutlu
and Moscibroda 2008] can mark a new batch of transactions using UTQ.

(3) Count the number of matches. Using a “count transaction queue” (CTQ) instruction,
the programmer can count the number of transactions that match the preceding
search, and can store the result in a specified destination register. This capability
allows the firmware to make decisions according to the demand for different DRAM
resources; for example, a rank with no pending requests can switch to a low power
state, or a heavily contended bank can be prioritized.

Eventually, a DDRx command sequence is created for each transaction in the transac-
tion processor and enqueued in the command queue. The transaction processor allows
the programmer to issue a legal command to the command queue by placing the com-
mand type and the address in a set of command registers, and then executing an “issue
command queue” (ICQ) instruction. An alternative to using ICQ is to use a command
flag that can be added to any instruction (-C). In addition to precharge, activate, read
and write commands, the firmware can also issue a “sleep” command to throttle the
DRAM system for active power management. The sleep command specifies the number
of cycles for which the command logic should stall once the sleep command reaches the
head of the command queue. Other DRAM maintenance commands allow changing
DRAM power states and issuing a refresh to DRAM.

By relying on dedicated command logic to stall each command until it is free of all
timing constraints, PARDIS allows the programmer to write firmware code for the
DDRx DRAM system without worrying about timing constraints or synchronization
with the DRAM clock; however, knowing the time at which different commands will
become ready to issue is still critical to deriving a high-performance, efficient command
schedule. To allow the firmware to deliver better performance by inspecting when a
command will become ready, a ready bit is added to each transaction; by default, the
ready bit indicates that the command will be ready in the next clock cycle; however, the
programmer can change this to a larger number of cycles using a “set ready threshold”
(SRT) instruction.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:11

Fig. 6. Illustrative example of PARDIS firmware implementation.

Fig. 7. Illustrative example of page interleaving at the request processor. The destination register in each
line of code is the leftmost register.

5. FIRMWARE IMPLEMENTATION

Writing firmware for PARDIS includes programming the request and transaction pro-
cessors. To achieve this, the programmer initializes the SRAM arrays holding code and
data on the request and transaction processors (Figure 6). The two code SRAMs hold
address mapping and command scheduling algorithms, while all the required constant
values for initialization are stored in the data SRAMs. The firmware model enables im-
plementing address mapping, command scheduling, refresh management, and DRAM
power management efficiently.

5.1. Example Firmware Code for Page Interleaving and Permutation-Based Address Mapping

As explained in Section 4.1.2, registers R1-R4 are used for holding the address and
metadata fields of the request once the request is dequeued from the request queue,
and registers R5-R8 are used for enqueuing the next transaction at the transaction
queue. The firmware can either directly copy R1-R4 to R5-R8 to implement page inter-
leaving [Jacob et al. 2008], or can operate on R1-R4 to implement more sophisticated
address mapping heuristics. Figure 7 shows an example code snippet that implements
page interleaving. In the figure, an infinite loop iteratively dequeues the next request,
copies the contents of the request registers to transaction registers, and enqueues a
new transaction at the transaction queue. The first instruction of the loop is annotated
with the R flag, which forces it to block until the next request arrives. Since one source
operand of each ADD instruction in the example is the hardwired zero register (R0),
each ADD instruction effectively copies one source request register to a destination
transaction register. The last ADD instruction is annotated with the T flag to check for
available space in the transaction queue, and to enqueue a new transaction.

As a second example of address mapping at the request processor, an implementa-
tion of permutation-based page interleaving [Zhang et al. 2000] is shown in Figure 8.
In every iteration of the address mapping loop, an AND instruction first filters out
unwanted bits of the row ID field using a bit mask. (The mask is defined based on
DRAM parameters, such as the number of banks.) Then, a shift-right logical (SRL)
instruction aligns the selected row ID bits with the least significant bits of the bank ID.
An XOR instruction generates the new bank ID for the request, and stores the results

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:12 M. N. Bojnordi and E. Ipek

Fig. 8. Illustrative example of permutation-based address mapping on the request processor. The destination
register in each line of code is the leftmost register.

Fig. 9. Example transaction processing code for the FCFS scheduling algorithm. The leftmost register in
each line of code is the destination register.

in a transaction register. The remaining instructions copy source request registers to
destination transaction registers, and enqueue a transaction at the transaction queue.

5.2. Example Firmware Code for FCFS Command Scheduling Algorithm

As a simple example of transaction scheduling, the firmware can emit the next valid
DRAM command of the oldest transaction, and can process all requests in the same
order that they arrive at the request processor. The transaction processing code of
this first-come first-serve (FCFS) algorithm is shown in Figure 9. The code snippet
shows an infinite loop with three instructions. A BTQE instruction keeps checking
the empty flag of the transaction queue until it reads a zero. The second instruction
is a load from transaction queue (LTQ), which is annotated with the C flag. Since
the key mask register (R1) that specifies which bits of the variable and fixed keys
should be searched (Section 4.2.1) is initialized to zero, LTQ simply searches for a
valid transaction in the transaction queue. Because of the annotation with the C flag,
the LTQ instruction creates a command in the destination register (R9) and in the
command address registers. Then, based on the valid bit of the command (now in R9),
the LTQ instruction decides whether to enqueue the command in the command queue.

5.3. Example Firmware Code for FR-FCFS Command Scheduling Algorithm

An example code snippet for a higher-performance, first-ready, first-come, first-serve
(FR-FCFS) [Rixner et al. 2000] policy is shown in Figure 10. FR-FCFS considers DRAM
resource availability and the state of each transaction to reduce the overall latency of
a DRAM access. The code uses an infinite loop to receive the next transaction and
to generate the corresponding commands. In the body of the loop, a transaction is
prioritized on the basis of the type of the next DRAM command it requires. A sequence

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:13

Fig. 10. Example transaction processing code for the FR-FCFS scheduling algorithm. The leftmost register
in each line of code is the destination register.

of LTQ instructions are used to find matches for a specific variable key. The first LTQ
instruction uses a pair of key and mask registers (R10, R11) holding a bit pattern
that represents all transactions with a ready read or write command. (Recall from
Section 4.2.3 that the register holding the bit mask is implicit, since the bit mask always
resides in the next odd register following a key.) Therefore, this instruction searches
for the oldest ready DRAM column access command, and issues the command to the
command queue. The following instruction checks the valid bit of the command placed
in R1, and starts scheduling the next command if a valid column access was found. If
no ready read or write command was available, the next two instructions search for a
valid activate command and issue it if found; otherwise, the code searches for a ready
precharge command. Ready DRAM commands are prioritized over commands that are
not ready by using the bit masks, while the order in which instructions are executed
enforces a descending priority from column reads and writes to activate and precharge
commands.

5.4. Example Firmware Code for Par-BS Command Scheduling Algorithm

An example code snippet for a fair and high-performance DRAM command scheduler,
Parallelism-Aware Batch Scheduling (ParBS) [Mutlu and Moscibroda 2008], is shown
in Figure 11. Unlike FCFS and FR-FCFS, ParBS services each thread’s concurrent
requests in parallel, thereby reducing the average slowdown per thread. (This requires
a dedicated queue per bank for command scheduling. PARDIS can implement this
feature because the transaction queue supports associative search operations and can
emulate multiple queues.) To avoid starvation of the memory requests pending in the
queues, ParBS processes memory requests in batches. This guarantees that a memory
request within an existing batch is serviced before forming a new batch. ParBS employs
two rules, known as the “max rule” and the “total rule”, to rank threads within a batch
based on their resource requirements. ParBS uses the thread ranks and the state
of DRAM banks to generate DRAM commands while ordering commands as follows:
(1) marked requests first; (2) row hit first; (3) higher ranked first; and (4) oldest first.
The proposed firmware for ParBS consists of four main parts.

(1) Bank ID selection. Part of the code running on the request processor copies the bank
ID of each memory request from the original address to the least significant byte

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:14 M. N. Bojnordi and E. Ipek

Fig. 11. Example code for the Par-BS scheduling algorithm. The leftmost register in each line of code is the
destination register.

of the metadata.1 (These eight bits hold the prefetch ID and application-defined
priority fields when a request is first written to the request queue; ParBS firmware
overwrites these fields.) Since the request metadata is automatically copied to
the f-key at the time a transaction is written to the transaction queue (recall
from Section 4.2.1), the transaction processor can access the transaction queue by
associative search operations on a specific bank ID. This allows the transaction
processor to emulate a controller with dedicated queues for each bank.

(2) Batch formation. The firmware uses the busy flag (B) of the variable keys to mark
the memory transactions as a new batch. When a transaction is written to the
transaction queue, its busy flag is set to zero by default; thereafter, a UTQ instruc-
tion can change the busy flag by searching and updating the transaction queue.
As shown in Figure 11(b), a UTQ instruction uses R0 for both search keys, and

1This example code uses eight bits for bank IDs that enables addressing into up to 256 banks per channel.
Support for higher number of banks is possible at the cost of firmware complexity.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:15

marks all valid transactions in the queue with a bit mask (0X100).2 A new batch is
formed after all entries in the current batch are processed and removed from the
transaction queue.

(3) Max rule application. ParBS applies the max rule to each newly formed batch of
transactions to find the most heavily demanded bank for each thread. Based on
this rule, a thread with the lowest number of requested banks has the highest
priority. The example firmware implements this capability using CTQ, MIN, and
MAX instructions as shown in Figure 11(c).

(4) Total rule application. The total load rule is applied to all threads for fine-grained
ranking. Among all threads that are assigned the same rank by the max rule, a
thread with a lower total load is ranked higher. A comparison tree, as shown in
Figure 11(d) can efficiently implement this capability using control flow instructions
BLSG and BLT.

(5) DRAM command generation. Based on the decisions made by the comparison tree
from the previous step, the execution flow ultimately reaches a subroutine that
schedules DRAM commands. On the one hand, this results in a simple and high-
throughput software implementation of the ParBS scheduler; on the other hand, it
increases the size of firmware.3 Figure 11(e), shows an example command schedul-
ing subroutine that prioritizes commands based on batch, row-hit, rank, and age.

5.5. Example Firmware Code for TCM Command Scheduling Algorithm

An example firmware implementation of the thread cluster memory scheduling
(TCMS) [Kim et al. 2010b] is shown in Figure 12. TCMS is a fair and high-throughput
memory scheduler that groups the application threads into two memory-intensive and
memory-nonintensive clusters. Since the memory-nonintensive threads are sensitive to
latency, TCMS prioritizes them to improve overall throughput. This, however, may re-
sult in long service delay for the memory-intensive cluster, thereby making the schedul-
ing policy unfair. TCMS improves fairness in the memory-intensive cluster by shuffling
the threads periodically. The proposed firmware code for TCMS consists of four main
parts, as follows.

(1) Initialization. All required regular and special registers are initialized at the be-
ginning. Regular registers hold constant values required for search keys and bit
masks, while special registers are programmed to monitor the state of the memory
subsystem. (Among 64 special registers, S0-S31 are dedicated to counter inter-
rupts, and S32-S63 are used as statistics counters for monitoring the commands
issued to the command queue.) In the TCMS firmware, two interrupt counters are
programmed for thread clustering and shuffling (Figure 12(a)).

(2) Thread clustering routine. TCM requires observing the memory bandwidth usage
and clustering threads periodically. As shown in Figure 12(b), the firmware pro-
vides an interrupt service routine called at “quantum” intervals to determine new
clusters. First, all the required statistics are collected; based on the numbers, a de-
cision tree then finds an appropriate order of threads. The outcome of the decision
tree (stored in R61) is a pointer to a corresponding command scheduling routine.

(3) Shuffling service routine. Using simple ALU operations, the order of memory-
intensive (bandwidth-sensitive) threads is shuffled. The outcome of this shuffling
is a new value stored in R61 (Figure 12(c)).

(4) Command scheduling routines. Each scheduling routine is an infinite loop that
schedules commands based on thread rank, row hit, and age. As shown in

2Updating the busy flag by a UTQ instruction does not affect other fields of the variable key.
3PARDIS supports transaction processing codes sizes up to 64KB.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:16 M. N. Bojnordi and E. Ipek

Fig. 12. Example code for the TCM scheduling algorithm. The leftmost register in each line of code is the
destination register.

Figure 12(d), the last instruction of the loop is a JR instruction that jumps to
the target stored in R61. Since this register is updated by the clustering and shuf-
fling routines, the command scheduler can switch among different routines at the
end of each loop iteration. Upon issuing a read or write command to the command
queue, the scheduling routine increments a register (R30-R33) that tracks the band-
width utilization of the corresponding thread. This register is used in the clustering
routine to determine the memory-intensive and memory-nonintensive threads.

5.6. Example Firmware Code for DRAM Power Management

An example firmware for queue-aware DRAM power management, based on Hur and
Lin’s proposal [Hur and Lin 2008], is shown in Figure 13. This technique relies on
transitioning to different power consumption modes to reduce the DRAM static power.
Each DRAM rank is provided with a counter that records total idle time. For each rank,
if the idle counter passes a predefined threshold and no pending memory request exists
in the queue, the operational state changes to “low power”. The rank remains in the
low power state until a memory request in the queue requires access to the rank. In the

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:17

Fig. 13. Example transaction processing code for queue-aware power management. The leftmost register in
each line of code is the destination register.

firmware example, queue-aware power management is applied on top of an FR-FCFS
scheduling algorithm. The proposed code snippet has four main parts:

(1) Rank ID selection. Similar to ParBS firmware, part of the code running on the
request processor copies the rank ID to the least significant byte of the metadata.
This allows the transaction processor to access the transactions in the queue by
associative search operations for specific bank IDs.

(2) Register and counter initialization. The transaction processing part of the code is
initialized in Figure 13b, such that it supports a counter interrupt per DRAM rank.
This allows the firmware to control each rank independently.

(3) Rank controller service routine. The power state of each DRAM rank is controlled
by an interrupt service routine as shown in Figure 13(c). Each service routine
periodically checks the state of the transaction queue and corresponding DRAM
rank, and transitions to an appropriate power state. If no pending requests to the
corresponding DRAM rank exists in the transaction queue, it transitions to a low
power mode. A rank switches from a low power state to a high power state if it has
at least one pending request in the transaction queue. In this example, a single
counter interrupt is used to implement both power states and polling intervals.
For example, the rank 0 controller consists of two subroutines labeled rank00 and
wake00, which are accessed by a single counter interrupt (S0). At every transition

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:18 M. N. Bojnordi and E. Ipek

Fig. 14. Example transaction processing code for interrupt programming. The leftmost register in each line
of code is the destination register.

to the low power state, S0 is reprogrammed for an appropriate polling interval and
subroutine address.4

(4) Command scheduling routine. In this example we use the FR-FCFS command
scheduling algorithm as the main routine; however, the rank service routines are
general enough to apply to other command schedulers.

5.7. Example Firmware Code for DRAM Refresh Management

An example firmware for Elastic Refresh [Stuecheli et al. 2010] is shown in Figure 14.
This technique exploits the flexibility of DRAMs ([Micron Technology, Inc. 2009a]) to
postpone refresh operations. To mitigate refresh penalties due to conflicts with actual
read and write accesses, the technique employs a predictive approach for refreshing
DRAM devices in idle periods. This approach relies on an “Idle Delay Function” (IDF)
shown in Figure 14, which defines three delay regions: constant, proportional, and high
priority. As the number of postponed refresh commands increases, the delay between
two consecutive check points for issuing refresh commands decreases; an urgent re-
fresh becomes necessary after seven postponed refresh commands. The constant and
proportional delay regions are dynamically tuned for different applications by moni-
toring online statistics, such as the number of idle intervals. The firmware consists of
three routines:

(1) Main command scheduling routine. In the main routine, two interrupt counters
(S0 and S1) are programmed for tuning the refresh interval and issuing refresh
commands. The rest of the routine implements the FR-FCFS command scheduling
algorithm.

4We studied the tradeoff between firmware execution overheads and state transition latency to find efficient
polling intervals.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:19

(2) Tuning the refresh interval. This routine implements IDF by periodically check-
ing the registers, and counters to adjust the delay interval for calling the refresh
management routine.

(3) Refresh management routine. This routine issues necessary DRAM refresh com-
mands while trying to postpone refresh operations until no pending request exists
in the queue. The routine records all postponed refresh operations for a rank in
architectural registers that are read by the refresh interval tuner. It also defines
two levels of priority for refreshing: normal and urgent. In the normal mode, refresh
operations can be postponed; in the urgent mode, immediate refresh operations are
required.

6. HARDWARE IMPLEMENTATION OF PARDIS

This article explores a scalar, pipelined implementation of PARDIS as depicted in
Figure 15. The proposed implementation follows a six-step procedure for processing an
incoming DRAM request, ultimately generating the corresponding DRAM command
stream. A unique request ID (URID) is assigned to a new DRAM request before it is
enqueued at the FIFO request queue. (1) The URID accompanies the request through-
out the pipeline, and is used to associate the request with commands and DRAM data
blocks. After a request is processed and its DRAM coordinates are assigned, a new
transaction for the request is enqueued at the transaction queue. (2) At the time the
transaction is enqueued, the fixed key of the transaction is initialized to the request
type, while the variable key is initialized based on the current state of the DRAM sub-
system. Although transactions enter the transaction queue in FIFO order, a queued
transaction is typically prioritized based on fixed and variable keys. (3) After which
the processor issues the next command of the transaction to the command queue.
(4) Commands that are available in the command queue are processed by the com-
mand logic in FIFO order. (5) A DRAM command is only dequeued when it is ready to
appear on the DDRx command bus. (6) Is issued to the DRAM subsystem at the next
rising edge of the DRAM clock.

6.1. Request Processor

The request processor implements a five-stage pipeline with a read interface to the
request queue and a write interface to the transaction queue. In the first stage of
the pipeline, an instruction is fetched from the instruction memory. All branches are
predicted taken,5 and on a branch misprediction, the over-fetched wrong-path instruc-
tion is nullified. In the second stage, the fetched instruction is decoded to extract control
signals, operands are read from the register file, and the next request is dequeued from
the request queue if the instruction is annotated with an R flag. If a request must be
dequeued but the request queue is empty, the request processor stalls the decode and
fetch stages until a new request arrives at the request queue. (Instructions in later
pipeline stages continue uninterrupted.) Request registers (R1-R4) can only be written
from the request queue side (on a dequeue), and are read-only to the request processor.
In the third pipeline stage, a simple 16-bit ALU executes the desired ALU operation,
or computes the effective address if the instruction is a load or a store. Loads and
stores access the data memory in the fourth stage. In the final stage of the pipeline,
the result of every instruction is written back to the register file, and if the T flag of
the instruction is set, a new transaction is enqueued at the transaction queue.

5Note that the request processor supports only a direct addressing mode for control flow instructions, which
does not require address calculation.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:20 M. N. Bojnordi and E. Ipek

Fig. 15. Illustrative example of the proposed PARDIS implementation.

6.2. Transaction Processor

The transaction processor is a 16-bit, five-stage pipelined processor. In the first stage
of the pipeline, the processor fetches the next instruction from a 64KB instruction
memory. In the implementation, branch and jump instructions are divided into two
categories: fast and slow. Fast branches include jump and branch on queue status
instructions (BTQE and BCQE), for which the next instruction can be determined in
the fetch stage; as such, these branches are not predicted and incur no performance
losses due to branch mispredictions. Slow branches depend on register contents and are
predicted by an 8K-entry g-share branch predictor. Critical branches in the transaction
processor are usually coded using the fast branch instructions (e.g., infinite scheduling
loops, or queue state checking).

In the second pipeline stage, the instruction is decoded, general- and special-purpose
registers are read, and special-purpose interrupt registers are set. Special purpose
registers are implemented using a 64-entry array of programmable counters. In
the proposed implementation of PARDIS, 32 of these programmable counters (S0-S31)
are used for timer interrupts, and the remaining 32 programmable counters (S32-S63)
are used for collecting statistics to aid in decision-making (Figure 16).

For every timer, there are two registers holding the interrupt service routine address
and the maximum counter value after which an interrupt must fire. Every time the
counter resets, an interrupt is fired and latched in an interrupt flop. There is a descend-
ing priority from S0 to S63 among all interrupt timers. To prevent nested interrupts, a
busy flag masks all other interrupts until the current interrupt finishes with a RETI
instruction, which resets the busy flag and the corresponding interrupt flop.

After decoding, a 16-bit ALU performs arithmetic and logic operations the transac-
tion queue is accessed; in parallel Figure 17 shows the proposed architecture of the
transaction queue comprising five components: (1) five 64-entry content-addressable

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:21

Fig. 16. Interrupt counters in the proposed PARDIS implementation.

Fig. 17. The proposed architecture of the transaction queue.

memories (CAMs), one each for the rank, bank, row, column, and unique request IDs;
(2) a 64-entry CAM storing variable keys; (3) a 64-bit population counter; (4) a 64-entry
CAM holding fixed keys; and (5) a 64 × 86 bit RAM holding a copy of the fixed data for
the transaction (i.e., the address, the fixed key, and the URID). The transaction queue
is accessible in four ways:

(1) Adding a new transaction. If the transaction queue is not full, a new transaction
is written to the transaction queue by updating the content of the address and
URID CAMs, variable keys, fixed keys, and the transaction data. Even though
transactions are allowed to leave the transaction queue out of order, the transaction
queue employs a circular enqueuing technique that maintains an oldest-first order
among occupied entries.

(2) Searching for a transaction. For all instructions that need to search the transaction
queue, the fixed and variable key CAMs are accessed with the corresponding search
keys. Every key is accompanied by a mask indicating which subset of the bits within
the key should contribute to the search (other bit positions are ignored by hard-
ware). The fixed and variable key CAMs provide match results to the transaction
RAM (for retrieving the DRAM address to be accessed by the selected transaction)
and to the population count logic (for counting the number of matches).

(3) Updating the variable keys. The variable key logic receives updates to the variable
key from the transaction processor and command logic. Updates to the software-
managed region of the variable key are generated by a UTQ instruction, whereas
the hardware managed region is automatically updated after every state change.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:22 M. N. Bojnordi and E. Ipek

Fig. 18. Illustrative example of the proposed command logic for PARDIS.

(4) Reading search results. After a search, the number of matching transactions can be
obtained from a population counter, and the DRAM address of the highest-priority
matching transaction can be obtained from a transaction RAM.

Command queue and data memory accesses occur in the fourth stage of the pipeline,
and the result of the instruction is written back to the register file in the fifth stage.

6.3. Command Logic

The command logic (Figure 18) is implemented by using masking and timing tables
initialized at boot time based on DDRx parameters, plus a dedicated down-counter
for each DRAM timing constraint imposed by the DDRx standard. At every DRAM
cycle, the command at the head of the command queue is inspected, and a bit mask is
retrieved from the masking table to mask out timing constraints that are irrelevant to
the command under consideration (e.g., tCL in the case of a precharge). The remaining
unmasked timers are used to generate a ready signal indicating whether the command
is ready to be issued to the DRAM subsystem at the next rising edge of the DRAM clock.

7. EXPERIMENTAL SETUP

We evaluate the performance potential of PARDIS by comparing fixed-function hard-
ware and PARDIS-based firmware implementations of FCFS [Rixner et al. 2000]; FR-
FCFS [Rixner et al. 2000]; Par-BS [Mutlu and Moscibroda 2008]; and TCMS [Kim
et al. 2010b] scheduling algorithms. We also implement in firmware a recent DRAM
power management algorithm proposed by Hur and Lin [2008], and compare both the
performance and the energy of this implementation to the fixed-function hardware im-
plementation of the same algorithm. We evaluate DRAM refresh management on PAR-
DIS by comparing the fixed-function hardware implementation of the Elastic Refresh
technique [Stuecheli et al. 2010] to its firmware implementation. Finally, we evaluate
the performance potential of application-specific optimizations enabled by PARDIS by
implementing custom address mapping mechanisms. We evaluate DRAM energy and
system performance by simulating 13 memory-intensive parallel applications, running
on a heavily modified version of the SESC simulator [Renau et al. 2005]. We measure
the area, frequency, and power dissipation of PARDIS by implementing the proposed
system in Verilog HDL, and synthesizing the proposed hardware.

7.1. Architecture

We modify the SESC simulator [Renau et al. 2005] to model an eight-core system
with a 4MB L2 cache and two on-chip memory controllers. Table III shows the simula-
tion parameters. In the simulated configuration, memory channels are fully populated

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:23

Table III. Simulation Parameters

Core 8 4-issue cores, 2.0 GHz
Functional units Int/FP/Ld/St/Br units 2/2/2/2/2, Int/FP Mult 1/1
IQ, LSQ, ROB size IssueQ 32, LoadQ/StoreQ 24/24, ROB 96
Physical registers Int/FP 96/96
Branch predictor Hybrid, local/global/meta 2K/2K/8K, 512-entry

direct-mapped BTB, 32-entry RAS
IL1 cache (per core) 32KB, direct-mapped, 32B block, hit/miss delay 2/2
DL1 cache (per core) 32KB, 4-way, LRU, 32B block,

hit/miss delay 3/3, MESI protocol
L2 cache (shared) 4MB, 8-way, LRU, 64B block, hit/miss delay 24/24
PARDIS request/transaction/command queue size: 64/64/64

8Gb DDR3-1066 chips, 2 Channels, 4 Ranks/Channel,
8 Banks/Rank, tRCD: 7, tCL: 7, tWL: 6, tCCD: 4,

DRAM Subsystem tWTR: 4, tWR: 8, tRTP: 4, tRP: 7, tRRD: 4,
[Micron Technology, Inc. 2009a] tRAS: 20, tRC: 27, tBURST: 4, tFAW: 20,

IDD0: 1314, IDD1: 1584, IDD2P: 288,
IDD2N: 1620, IDD3P: 1080, IDD3N: 1800,
IDD4R: 2304, IDD4W: 2304, IDD5B: 3297,
IDD6: 216

with DIMMs (typical of server systems [Hur and Lin 2008]), which restricts the max-
imum channel data rate to 800MT/s for DDR3-1066 [Micron Technology, Inc. 2009c,
2009a; Hewlett-Packard Development Company, L. P. 2010]. This results in a core-
to-DRAM clock ratio of five. Energy results for the DRAM subsystem are generated
based on DDR3-1066 product data from Micron[Micron Technology, Inc. 2009a]. Evalu-
ated baseline controllers have the same queue sizes as PARDIS (64 entries each); they
observe pending requests at the beginning of a DRAM clock cycle, and make scheduling
decisions by the end of the same cycle. (In PARDIS, this is not always the case because
policies are implemented in firmware.)

7.2. Applications

Evaluated parallel workloads represent a mix of thirteen data-intensive applications
from Phoenix [Yoo et al. 2009]; SPLASH-2 [Woo et al. 1995]; SPEC OpenMP [Dagum
and Menon 1998]; NAS [Bailey et al. 1994]; and Nu-MineBench [Narayanan et al.
2006] suites. Table IV summarizes the evaluated benchmarks and their input sets. All
applications are simulated to completion.

7.3. Synthesis

We evaluate the area and power overheads of the proposed architecture by imple-
menting it in Verilog HDL and synthesizing the design using Cadence Encounter RTL
Compiler [Cadence] with FreePDK [FreePDK] at 45nm. The results are then scaled to
22nm (relevant parameters are shown in Table V). Instruction and data memories are
evaluated using CACTI 6.0 [Wilton and Jouppi 1996], while register files and CAMs
are modeled through SPICE simulations with the FabMem toolset from FabScalar
[Choudhary et al. 2011].

8. EVALUATION

We first present synthesis results on the area, power, and delay contributions of
various hardware components in PARDIS. Next, we compare fixed-function hard-
ware and PARDIS-based firmware implementations of existing scheduling policies,
address-mapping techniques, power management algorithms, and refresh scheduling

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:24 M. N. Bojnordi and E. Ipek

Table IV. Applications and Data Sets

Benchmarks Suite Input

Histogram Phoenix 34,843,392 pixels (104MB)
String Match Phoenix 50MB non-encrypted file
Word Count Phoenix 10MB text file
Linear Regression Phoenix 50MB key file
ScalParC NU-MineBench 125K pts., 32 attributes
MG NAS OpenMP Class A
CG NAS OpenMP Class A
Swim-Omp SPEC OpenMP MinneSpec-Large
Equake-Omp SPEC OpenMP MinneSpec-Large
Art-Omp SPEC OpenMP MinneSpec-Large
Ocean SPLASH-2 514 × 514 ocean
FFT SPLASH-2 1M points
Radix SPLASH-2 2M integers

Table V. Technology Parameters
[ITRS; Zhao and Cao 2006]

Technology Voltage FO4 Delay

45nm 1.1 V 20.25ps
22nm 0.83 V 11.75ps

Fig. 19. Delay, area, and peak power characteristics of the synthesized PARDIS implementation.

mechanisms. We then evaluate the impact of a set of application-specific address-
mapping heuristics enabled by PARDIS.

8.1. Area, Power, and Delay: Where Are the Bottlenecks?

Synthesis results on the area, power, and delay contributions of different hardware
components are shown in Figure 19. A fully synthesized implementation of PARDIS
operates at over 2GHz, occupies 1.8mm2 of die area, and dissipates 152mW of peak
power; higher frequencies, lower power dissipation, or a smaller area footprint can be
attained through custom rather than fully synthesized circuit design. Most of the area
is occupied by the request and transaction processors because of four 64KB instruc-
tion and data SRAMs; however, the transaction queue, which implements associative
lookups using CAMs, is the most power-hungry component (29%). Other major con-
sumers of peak power are the transaction processor (29%) and the request processor
(28%).

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:25

Fig. 20. Performance of PARDIS-based and hardwired implementations for FCFS, FR-FCFS, PARBS, and
TCMS scheduling algorithms.

Fig. 21. Performance of PARDIS-based and hardwired implementations of permutation-based address
mapping.

8.2. Scheduling Policies

Figure 20 compares PARDIS-based firmware implementations of FCFS [Rixner et al.
2000]; FR-FCFS [Rixner et al. 2000]; Par-BS [Mutlu and Moscibroda 2008]; and
TCMS [Kim et al. 2010b] scheduling algorithms to their fixed-function hardware
implementations. PARDIS achieves virtually the same performance as fixed-function
hardware on FCFS and FR-FCFS schedulers across all applications. For some bench-
marks (e.g., ART and OCEAN with FR-FCFS), the PARDIS version of a scheduling
algorithm outperforms the fixed-function hardware implementation of the same al-
gorithm by a small margin. This improvement is an artifact of the higher latency
incurred in decision-making when using PARDIS, which generally results in greater
queue occupancies. As a result of having more requests to choose from, the scheduling
algorithm is able to exploit bank parallelism and row buffer locality more aggressively
under the PARDIS implementation. However, for Par-BS and TCMS—two compute-
intensive scheduling algorithms—PARDIS suffers from higher processing latency, and
hurts performance by 8% and 5%, respectively.

8.3. Address Mapping

To evaluate the performance of different DRAM address-mapping techniques on
PARDIS, the permutation-based interleaving [Zhang et al. 2000] technique was
mapped onto PARDIS and compared to its fixed-function hardware implementation
(Figure 21). The average performance of the two implementations differ by less than

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:26 M. N. Bojnordi and E. Ipek

Fig. 22. DRAM energy comparison between the PARDIS-based and hardwired implementations of the
queue-aware power management technique.

Fig. 23. Performance of PARDIS-based and hardwired implementations for power management technique.

1%; interestingly, PARDIS outperforms fixed-function hardware by a small margin on
some applications. As explained in Section 8.2, PARDIS incurs a higher transaction
processing latency, which results in a higher transaction queue occupancy. In a schedul-
ing algorithm that searches for specific commands (e.g., FR-FCFS, which searches for
row hits), increasing the number of candidate commands sometimes improves perfor-
mance (SWIM, FFT, and HISTOGRAM in Figure 21). Other applications, such as ART
and OCEAN, do not benefit from this phenomenon.

8.4. Power Management

DRAM power management with PARDIS was evaluated by implementing Hur and
Lin’s queue-aware power management technique [Hur and Lin 2008] in firmware, and
comparing the results to a fixed-function hardware implementation (Figure 22); in
both cases, the underlying command scheduling algorithm is FR-FCFS. The hardwired
implementation reduces average DRAM energy by 32% over conventional FR-FCFS
at the cost of 4% lower performance. The firmware implementation of queue-aware
power management with PARDIS shows similar results: 29% DRAM energy savings
are obtained at the cost of a 5% performance loss (Figures 22 and 23).

8.5. Refresh

In order to evaluate DRAM refresh management on PARDIS, a conventional
on-demand DDR3 refresh method [Micron Technology, Inc. 2009a] is considered
as the baseline to which fixed-function hardware and PARDIS-based firmware

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:27

Fig. 24. Performance of PARDIS-based and hardwired implementations of the elastic refresh scheduling
algorithm.

Fig. 25. Speedup over hardwired permutation-based interleaving [Zhang et al. 2000] using application-
specific address mapping on PARDIS.

implementations of the recently proposed Elastic Refresh algorithm [Stuecheli et al.
2010] are compared (Figure 24). The PARDIS-based refresh mechanism takes advan-
tage of interrupt programming to manage the state of the ranks and to issue refresh
commands at the right time. The results indicate that the average performance of
firmware-based elastic refresh is within 1% of fixed-function hardware.

8.6. Application Specific Optimizations

A hardwired address-mapping scheme uses a fixed-mapping function to distribute
memory accesses among DRAM banks; however, higher bank-level parallelism and
row buffer hit rates can be achieved by defining a custom mapping function for each
application based on profiling analysis. We define a profiling dataset for each applica-
tion and evaluate the execution time when using different bit positions to index DRAM
channels, ranks, and banks. (To cull the design space, we require each DRAM coordinate
to comprise a set of adjacent bits.) After finding the best scheme for each application,
we run new simulations based on the reference data sets to report the execution time
and DRAM energy consumption.6 As shown in Figure 25, application-specific DRAM
indexing improves performance by 17%, 14%, 7%, and 6% over permutation-based in-
terleaving [Zhang et al. 2000] for FCFS, FR-FCFS, Par-BS, and TCMS, respectively;
corresponding DRAM energy savings are 22%, 14%, 9%, and 9% (Figure 26).

6We assume that the firmware is provided by the system and configured according to the needs of each
application by the OS. User-level programming interfaces [Reinhardt et al. 1994] are left for future work.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:28 M. N. Bojnordi and E. Ipek

Fig. 26. DRAM energy savings over hardwired permutation-based interleaving [Zhang et al. 2000] using
application-specific address mapping on PARDIS.

9. RELATED WORK

PARDIS builds upon existing work in high-performance memory systems.

9.1. DDRx Controller Optimizations

Numerous DDRx controller optimizations for improving performance, energy, and QoS
have been published in the literature [Mutlu and Moscibroda 2008; Rixner et al. 2000;
Kim et al. 2010b; Hur and Lin 2008; Stuecheli et al. 2010; Kim et al. 2010a; Diniz
et al. 2007; Zheng et al. 2008; Isen and John 2009; Sudan et al. 2010; Liu et al.
2011; Stuecheli et al. 2010]. Unlike PARDIS, these proposals address specific workload
classes (multiprogrammed, parallel, or real-time); yet a hardwired memory controller is
neither able to meet the requirements of a diverse set of applications optimally, nor can
it change its objective function for a new optimization target. In addition, the emergence
of new memory technologies (e.g., PCM) creates new opportunities for energy, wear-
out, and performance optimization, which are difficult to exploit within an existing
hardwired controller. On the other hand, PARDIS provides significant flexibility in
supporting a diverse set of capabilities through firmware-based programmable control,
ease of applying revisions to the implemented memory controllers through firmware
patches, and configurability in interfacing to different media.

9.2. Programmable Cache and Directory Controllers

Programmability is a well-known concept that has been broadly applied to mem-
ory systems. FLASH [Kuskin et al. 1994] is a multiprocessor platform that intro-
duces a general-purpose processor, called MAGIC, for executing directory protocols.
Typhoon [Reinhardt et al. 1994] is a programmable architecture that supports
Tempest—a message-passing protocol. Alewife [Agarwal et al. 1995] allows perfor-
mance tuning through configuration of the cache coherence protocol. Smart Memo-
ries [Firoozshahian et al. 2009] is a framework for designing cache coherent memory
components connected via an on-chip network. The focus of these proposals is on caches
and directories, not on managing internal DRAM resources. In contrast, PARDIS pro-
poses a fully programmable framework that provides application-specific control of the
DRAM subsystem.

9.3. Intelligent DRAM Controllers

Intelligent memory controllers have been proposed to provide a degree of configura-
bility to the memory system. Impulse [Carter et al. 1999] is a memory controller

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:29

that provides configurable access to memory blocks via physical address remapping
to accelerate special functions (e.g., matrix transpose). Other proposals introduce pro-
grammability into controllers for on-chip SRAMs and DMA engines [Martin et al. 2009;
Kornaros et al. 2003], or allow choosing among predefined QoS-aware scheduling al-
gorithms for a DDRx memory controller [Lee et al. 2005]. Recently proposed RL-based
memory controllers [Ipek et al. 2008; Mukundan and Martinez 2012] introduce the
new concept of self-optimization to DRAM command scheduling, exploiting reinforce-
ment learning techniques. An RL-based memory controller successfully implements a
hardwired but adaptive algorithm for DDR2 memory controllers. To the best of our
knowledge, PARDIS is the first fully programmable DRAM memory controller that
allows for managing the request and command streams in software.

10. CONCLUSIONS

We have presented PARDIS, a programmable memory controller that can meet the per-
formance requirements of a high-speed DDRx interface. We have seen that it is possible
to achieve performance within 8% of a hardwired memory controller when contempo-
rary address-mapping, command scheduling, refresh management, and DRAM power
management techniques are mapped onto PARDIS. We have also observed 6–17% per-
formance improvements and 9–22% DRAM energy savings by using application-specific
address-mapping heuristics enabled by PARDIS. We conclude that programmable
DDRx controllers hold the potential to significantly improve the performance and
energy-efficiency of future computer systems.

REFERENCES

AGARWAL, A., BIANCHINI, R., CHAIKEN, D., KRANZ, D., KUBIATOWICZ, J., HONG LIM, B., MACKENZIE, K., AND

YEUNG, D. 1995. The MIT alewife machine: Architecture and performance. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture. 2–13.

BAILEY, D. H. ET AL. 1994. NAS parallel benchmarks. Tech. rep. RNR-94-007, NASA Ames Research Center.
BROWNE, M., AYBAY, G., NOWATZYK, A., DUBOIS, M., AND MEMBER, S. 1998. Design verification of the s3.mp cache

coherent shared-memory system. IEEE Trans. Comput.
CADENCE. Encounter RTL compiler. http://www.cadence.com/products/ld/rtl-compiler/.
CARTER, J., HSIEH, W., STOLLER, L., SWANSON, M., ZHANG, L., BRUNVAND, E., DAVIS, A., KUO, C.-C., KURAMKOTE,

R., PARKER, M., SCHAELICKE, L., AND TATEYAMA, T. 1999. Impulse: Building a smarter memory controller.
In Proceedings of the International Symposium 5th HPCA. High-Performance Computer Architecture.
70–79.

CHOUDHARY, N. K., WADHAVKAR, S. V., SHAH, T. A., MAYUKH, H., GANDHI, J., DWIEL, B. H., NAVADA, S., NAJAF-ABADI,
H. H., AND ROTENBERG, E. 2011. Fabscalar: Composing synthesizable RTL designs of arbitrary cores
within a canonical superscalar template. In Proceedings of the 38th Annual International Symposium
on Computer Architecture (ISCA’11). ACM, New York, 11–22.

DAGUM, L. AND MENON, R. 1998. OpenMP: An industry-standard API for shared-memory programming. IEEE
Comput. Sci. Eng. 5, 1, 46–55.

DINIZ, B., GUEDES, D., MEIRA,W., JR., AND BIANCHINI, R. 2007. Limiting the power consumption of main memory.
In Proceedings of the Annual International Symposium on Computer Architecture (ISCA). 290–301.

FIROOZSHAHIAN, A., SOLOMATNIKOV, A., SHACHAM, O., ASGAR, Z., RICHARDSON, S., KOZYRAKIS, C., AND HOROWITZ, M.
2009. A memory system design framework: Creating smart memories. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA’09). ACM, New York, 406–417.

FREEPDK. Free PDK 45nm open-access based PDK for the 45nm technology node. http://www.eda.ncsu.edu/
wiki/FreePDK.

HEWLETT-PACKARD DEVELOPMENT COMPANY, L. P. 2010. DDR3 memory technology. http://h20195.www2.hp.com/
v2/GetPDF.aspx/c01750914.pdf.

HUR, I. AND LIN, C. 2008. A comprehensive approach to dram power management. In Proceedings of HPCA’08.
305–316.

IPEK, E., MUTLU, O., MARTINEZ, J., AND CARUANA, R. 2008. Self-optimizing memory controllers: A reinforcement
learning approach. In Proceedings of the International Symposium on Computer Architecture.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

11:30 M. N. Bojnordi and E. Ipek

ISEN, C. AND JOHN, L. 2009. Eskimo - Energy savings using semantic knowledge of inconsequential memory
occupancy for dram subsystem. In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-42). 337–346.

ITRS. International Technology Roadmap for Semiconductors: 2010 Update. http://www.itrs.net/links/
2010itrs/home2010.htm.

JACOB, B. L., NG, S. W., WANG, D. T., AND WANG, D. T. 2008. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann.

KIM, Y., HAN, D., MUTLU, O., AND HARCHOL-BALTER, M. 2010a. Atlas: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In Proceedings of the IEEE 16th International Symposium
on High Performance Computer Architecture (HPCA). 1–12.

KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND HARCHOL-BALTER, M. 2010b. Thread cluster memory schedul-
ing: Exploiting differences in memory access behavior. In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’43). IEEE, Los Alamistos, CA,
65–76.

KORNAROS, G., PAPAEFSTATHIOU, I., NIKOLOGIANNIS, A., AND ZERVOS, N. 2003. A fully programmable memory
management system optimizing queue handling at multi gigabit rates. In Proceedings of the Design
Automation Conference. 54–59.

KUSKIN, J., OFELT, D., HEINRICH, M., HEINLEIN, J., SIMONI, R., GHARACHORLOO, K., CHAPIN, J., NAKAHIRA, D., BAXTER,
J., HOROWITZ, M., GUPTA, A., ROSENBLUM, M., AND HENNESSY, J. 1994. The Stanford flash multiprocessor.
In Proceedings of the 21st Annual International Symposium on Computer Architecture (ISCA’94). IEEE,
Los Alamitos, CA, 302–313.

LEE, K.-B., LIN, T.-C., AND JEN, C.-W. 2005. An efficient quality-aware memory controller for multimediaplat-
form soc. IEEE Trans. Circuits Syst. Video Technol. 15, 5, 620–633.

LIU, S., PATTABIRAMAN, K., MOSCIBRODA, T., AND ZORN, B. G. 2011. Flikker: Saving DRAM refresh-power through
critical data partitioning. In Proceedings of ASPLOS, R. Gupta and T. C. Mowry, Eds., ACM, New York,
213–224.

MARTIN, J., BERNARD, C., CLERMIDY, F., AND DURAND, Y. 2009. A microprogrammable memory con-
troller for high-performance dataflow applications. In Proceedings of ESSCIRC (ESSCIRC’09). 348–
351.

MICRON TECHNOLOGY, INC. 2009a. 8Gb DDR3 SDRAM. Micron Technology, Inc. http://www.micron.com//
getdocument/?documentId=416.

MICRON TECHNOLOGY, INC. 2009b. TN-29-14: Increasing NAND flash performance functionality. Micron Tech-
nology Inc. http://www.micron.com/getdocument/?documentId=140.

MICRON TECHNOLOGY, INC. 2009c. TN-41-08: design guide for two DDR3-1066 UDIMM systems introduction.
Micron Technology, Inc. http://www.micron.com//document download/?documentId=4297.

MUKUNDAN, J. AND MARTINEZ, J. F. 2012. Morse: Multi-objective reconfigurable self-optimizing memory sched-
uler. In Proceedings of the IEEE 18th International Symposium on High-Performance Computer Archi-
tecture (HPCA’12). IEEE, Los Alamitos, CA, 1–12.

MUTLU, O. AND MOSCIBRODA, T. 2008. Parallelism-aware batch scheduling: Enhancing both performance and
fairness of shared dram systems. In Proceedings of the 35th Annual International Symposium on Com-
puter Architecture. ACM, New York, 32–41.

NARAYANAN, R., ET AL. 2006. Minebench: A benchmark suite for data mining workloads. In Proceedings of the
IEEE International Symposium on Workload Characterization.

REINHARDT, S. K., LARUS, J. R., AND WOOD, D. A. 1994. Tempest and typhoon: User-level shared memory. In
Proceedings of ISCA-21. 325–336.

RENAU, J., ET AL. 2005. SESC simulator. http://sesc.sourceforge.net.
RIXNER, S., ET AL. 2000. Memory access scheduling. In Proceedings of the 27th Annual International Sympo-

sium on Computer Architecture.
STUECHELI, J., KASERIDIS, D., HUNTER, H. C., AND JOHN, L. K. 2010. Elastic refresh: Techniques to mitigate

refresh penalties in high density memory. In Proceedings of MICRO. 375–384.
SUDAN, K., CHATTERJEE, N., NELLANS, D., AWASTHI, M., BALASUBRAMONIAN, R., AND DAVIS, A. 2010. Micro-pages:

increasing dram efficiency with locality-aware data placement. In Proceedings of ASPLOS’10. 219–
230.

WILTON, S. AND JOUPPI, N. 1996. CACTI: An enhanced cache access and cycle time model. IEEE J. Solid-State
Circuits 31, 5, 677–688.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs: Characterization
and methodological considerations. In Proceedings of ISCA-22.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

A Programmable Memory Controller 11:31

YOO, R. M., ROMANO, A., AND KOZYRAKIS, C. 2009. Phoenix rebirth: Scalable MapReduce on a large-zscale shared-
memory system. In Proceedings of the IEEE International Symposium on Workload Characterization.

ZHANG, Z., ZHU, Z., AND ZHANG, X. 2000. A permutation-based page interleaving scheme to reduce row buffer
conflicts and exploit data locality. In Proceedings of the 33rd Annual International Symposium on Mi-
croarchitecture. ACM, New York, 32–41.

ZHAO, W. AND CAO, Y. 2006. New generation of predictive technology model for sub-45nm design exploration.
In Proceedings of the International Symposium on Quality Electronic Design.

ZHENG, H., LIN, J., ZHANG, Z., GORBATOV, E., DAVID, H., AND ZHU, Z. 2008. Mini-rank: Adaptive dram architecture
for improving memory power efficiency. In Proceedings of the 41st IEEE/ACM International Symposium
on Microarchitecture (MICRO-41). IEEE, Los Alamitos, CA, 210–221.

Received December 2012; revised June 2013; accepted June 2013

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 11, Publication date: December 2013.

