DESC: Energy-Efficient Data Exchange using
Synchronized Counters

Mahdi Nazm Bojnordi and Engin Ipek
University of Rochester
~ Rochester, NY 14627 USA
{bojnordi, ipek}@ece.rochester.edu

ABSTRACT

Increasing cache sizes in modern microprocessors require
long wires to connect cache arrays to processor cores. As
a result, the last-level cache (LLC) has become a major
contributor to processor energy, necessitating techniques to
increase the energy efficiency of data exchange over LLC
interconnects.

This paper presents an energy-efficient data exchange mech-
anism using synchronized counters. The key idea is to rep-
resent information by the delay between two consecutive
pulses on a set of wires, which makes the number of state
transitions on the interconnect independent of the data pat-
terns, and significantly lowers the activity factor. Simula-
tion results show that the proposed technique reduces overall
processor energy by 7%, and the L2 cache energy by 1.81x
on a set of sixteen parallel applications. This efficiency gain
is attained at a cost of less than 1% area overhead to the L2
cache, and a 2% delay overhead to execution time.

Categories and Subject Descriptors

B.3 [Hardware|: Memory Structures; B.4.3 [Hardware]:
Input/Output and Data Communications—Interconnections

General Terms

Design, Management, Performance

Keywords

Low power, Interconnect, Caches, Data encoding, Signaling

1. INTRODUCTION

On-chip interconnect is a major contributor to micropro-
cessor energy. Recent studies have shown that more than
60% of the dynamic power in modern microprocessors is dis-
sipated in driving on-chip interconnects [1, 2, 3]. Not only
do long wires present a highly capacitive load, but they also
expend significant energy due to the repeaters inserted along

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MICRO’46 December 7-11, 2013, Davis, CA, USA

Copyright 2013 ACM 978-1-4503-2561-5/13/12 ...$15.00.

the interconnect to linearize wire delay. Current scaling
trends indicate that interconnect power will be even higher
in future billion-transistor multicore processors [4, 5].

Last-level caches occupy significant area, and incur large
energy and delay overheads in data exchange over long wires.
Figure 1 shows the percentage of processor energy expended
on an 8MB cache when running a set of parallel applications
on a Sun Niagara-like multicore processor." On average, the
L2 cache is responsible for 15% of the total processor en-
ergy. Figure 2 breaks down the L2 cache energy into its con-
stituent parts, and shows that communication over the long,
capacitive H-tree interconnect is the dominant source of en-
ergy consumption (80% on average) in the L2 cache. (This
assumes that the L2 cache employs low standby power de-
vices that are optimized for energy efficiency, as explained in
Section 4. L2 power would be even higher if high-speed—and
thus, high leakage—transistors were used.) Consequently,
numerous architectural techniques have been developed to
mitigate interconnect energy in last-level caches.

Geomean]
Water-Spacial]
Water-Nsquared]
Swim]

RayTrace]

Radix]

Ocean]

MG]

LU |

Linear]

FT |

FFT |

Equake]
]

]

]

]

1

Cholesky
CcG
Barnes
Art

0 01 02 03 04 05 06 07 08 09

Figure 1: L2 energy as a fraction of total processor
energy. The processor configuration is explained in
Section 4.

An effective way of reducing cache interconnect energy is
to reduce the activity factor—i.e., the switching probability—
of the wires. This can be accomplished, for example, by en-
coding the data such that successive transmissions on the
data bus flip the state of only a small number of wires, or
by compressing the data in the last-level cache. Intercon-
nect energy can also be reduced by reducing the voltage, or

1The experimental setup is explained in Section 4.

M Total Static Energy O Other Dynamic Energy O H-Tree Dynamic Energy

Geomean
Water-Spacial
Water-Nsquared
Swim
RayTrace
Radix

Ocean

MG

LU

Linear

FT

FFT

Equake
Cholesky

CG

Barnes

Art

|
|
|
|
|
|
|
|
|
|
|
|
[|
|
|
|
|
1

0 01 02 03 04 05 06 07 08 09

Figure 2: Major components of the overall energy
consumption in an 8MB L2 cache. The L2 cache em-
ploys low standby power devices that are optimized
for energy efficiency. More details on the experi-
mental setup are provided in Section 4.

by using techniques to alleviate the adverse effects of capac-
itance on power and speed. Among these, techniques that
reduce the activity factor are broadly applicable since they
can be used on interconnects with different characteristics
(e.g., transmission lines [6] or low-swing wires [7, 2]).

This paper presents DESC, an energy-efficient data ex-
change method using synchronized counters. The goal is
to reduce the activity factor on the highly capacitive LLC
interconnect. The key idea is to represent information by
the number of clock cycles between two consecutive pulses
on a set of wires that connect two on-chip communication
points, thereby limiting the number of switching events to
one per transmission. This results in a time-based data rep-
resentation and creates new opportunities for further power
optimization.

When applied to a Sun Niagara-like multicore processor
with an 8MB L2 cache, the proposed approach reduces over-
all L2 cache energy by 1.81x. This results in 7% savings in
overall processor energy at a cost of less than 2% increase in
execution time, and less than 1% increase in the L2 cache
area.

2. BACKGROUND

This paper builds upon existing optimization techniques
for caches and on-chip communication. Kim et al. [8] pro-
pose a non-uniform cache architecture (NUCA) that allows
optimizing access time and energy based on the proximity of
the cache blocks to the cache controller. This optimization
is orthogonal to DESC and can supplement it by reducing
the average access time and energy.

Numerous proposals identify opportunities for cache com-
pression [9, 10, 11], which influences overall cache energy
by reducing the amount of information stored in SRAM ar-
rays and transferred on the cache interconnect. In contrast,
DESC provides an efficient data exchange mechanism to op-
timize cache interconnect energy, which can be combined
with SRAM array optimizations. It also has mechanisms
that exploit null and redundant blocks, and compares favor-
ably to dynamic zero compression [12].

Balasubramonian et al. [13] propose a hybrid intercon-
nect comprising wires with different latency, bandwidth, and
power characteristics. Specifically, recent work [14] proposes
techniques to exploit specific wires and topologies for the ad-
dress network. In contrast, DESC improves cache energy ef-
ficiency by decreasing the number of data interconnects and
the signal transition rate across those interconnects. This
makes DESC applicable to either hybrid or single intercon-
nects.

Techniques for energy efficient bus encoding are applicable
to cache interconnects. One such technique, bus invert cod-
ing [15], sets an upper bound of N/2 bit-flips for any N-bit
information transferred on N wires. This is achieved by the
use of one extra wire to indicate the encoding of the value on
the other wires (non-inverted or inverted). If the Hamming
distance between the present value and the last value on an
N-wire bus exceeds N/2, the inverted code is transmitted.
Unlike bus invert coding, DESC employs a time-dependent
representation of information on wires. This creates new
opportunities for efficient data transfers, and ultimately de-
livers fewer bit flips.

Other proposals focus on reducing static cache power, such
as Cache Decay [16], which takes a generational approach
to reducing cache leakage power, and Drowsy Caches [17],
which implement low power modes to reduce cache leakage.
Recent work [18] proposes to optimize leakage power by ap-
plying different techniques to L1 and L2 caches. DESC is
orthogonal to these proposals and can combine with them
in highly energy-efficient cache design.

The concept of time-based information representation is
used by pulse position modulation in telecommunications [19].
To the best of our knowledge, DESC is the first proposal that
efficiently adopts this concept in on-chip caches.

3. DATA EXCHANGE USING
SYNCHRONIZED COUNTERS

DESC is an energy-efficient data exchange technique for
synchronous on-chip communication. A DESC transmitter
sends information to a DESC receiver over a set of conven-
tional data wires; the receiver and the transmitter also share
a reset wire. The key idea is to represent information by the
delay between two pulses (in clock cycles), one on the shared
reset wire and the other on one of the data wires connecting
the receiver and the transmitter. The receiver is synchro-
nized with the transmitter through a synchronization strobe
sent from the transmitter. DESC uses an address transition
detection (ATD) circuit [20] for this synchronization.

Figure 3 shows an example using three communication
techniques: parallel, serial, and DESC. In the figure, one
byte (01010011) is sent from a transmitter to a receiver; all
wires are assumed to hold zeroes prior to the transmission.
With parallel data transfer, eight physical wires transfer the
value in one cycle, which results in four bit-flips on the inter-
connect. Serial data transfer requires only a single wire, but
results in longer transfer time (eight cycles); the result of
this transmission is five bit-flips. DESC needs three wires—
two for data and one for reset. The data byte is divided
into two four-bit chunks, and each chunk is sent by tog-
gling one of the two data wires. The reset wire is shared by
all data wires to specify the start of the data transmission
(before the transmission of a cache block); the number of
clock cycles between the reset signal and a bit-flip on a data

a) Parallel Communication

Data[7] 0
Data [6] J 1
Data [5] 0
Data [4] J 1
Data [3] 0
Data2] 0

b) Serial Communication

Data 0 1 0 1 0 0 1 1

c) DESC Communication

Reset
—

Data [1]

Data [0]

Time - >
0000 0011 0101

Figure 3: Illustrative example of three communi-

cation techniques: (a) parallel, (b) serial, and (c)
DESC.

wire represents the value of the corresponding chunk. The
transfer results in a total of three bit-flips across the reset
and data wires. (Although the synchronization strobe is not
shown in the figure, its overheads are accounted for in the
evaluation.) This simple example suggests that DESC can
reduce interconnect energy by using fewer wires than paral-
lel transmission, and by restricting the number of bit-flips
to one per chunk.

3.1 Communication Protocol

In DESC, cache blocks are partitioned into fixed-size, con-
tiguous chunks, and each chunk is assigned to a specific wire;
if the number of chunks is greater than the number of wires,
multiple chunks are assigned to each wire, and are trans-
mitted successively (Figure 4). Prior to transmission, every
chunk is buffered in a FIFO queue dedicated to its wire.

Cache Block
Partitioned into Chunks l l 2 l [128 l
Communication Wires 1 2 128
and FIFO Queues (a)
Cache Block (1 [2] [128]
Partitioned into Chunks - T~
S 65 |[{ 66 128
Communication Wires 1 2 64
and FIFO Queues I I b) I

Figure 4: Assignment of chunks to wires when the
number of wires is equal to (a) and less than (b) the
number of chunks.

DESC employs a communication protocol comprising re-

set and hold signals. Every cache block transmission starts
with the toggling of the shared reset wire. The transmis-
sion of the first chunk assigned to a data wire ends when
that wire is toggled for the first time; the number of cycles
between the toggling of the reset and data wires represents
the transmitted value. This initial toggling of the data wire
concludes the transmission of the first chunk, and starts the
transmission of the next chunk. This second chunk, in turn,
completes its transmission the next time the data wire is
toggled; hence, the second chunk value is equal to the num-
ber of clock cycles between the first and the second time the
data wire changes its state. Notice that this makes the trans-
mission time value-dependent, while keeping the switching
activity (and hence energy) on the data wires constant (one
per chunk).
Data Transmission. At the beginning of every cache block
transmission, the transmitter (1) sends a reset command to
the receiver, and (2) resets an internal counter, which is
incremented by one every cycle. Once the reset signal is sent,
the transmitter starts monitoring the chunks at the heads
of the FIFO queues, and checks if any chunk matches the
current counter value. On a match, the transmitter sends a
hold command to the receiver by toggling the matching data
wire. As soon as the reset signal arrives at the receiver, the
receiver resets its own counter to zero; later, when the hold
command arrives, the receiver interprets its counter value as
the value of the received chunk.

Figure 5 shows an example of the required signaling be-
tween a transmitter and a receiver. A single data wire is
used for sending two chunks, with values two and one. In
the example, each chunk is three bits wide, which requires
two three-bit counters, one at the transmitter and one at
the receiver. At the beginning of the transmission, both val-
ues are enqueued at the transmitter FIFO queue, and the
transmitter sends them in FIFO order—first two and then
one.

The transmitter sends the reset command to the receiver
through a physical wire called the reset strobe, and resets its
own counter. Thereafter, the transmitter counter is incre-
mented by one each cycle until the count reaches two, which
matches the chunk at the head of the FIFO queue. At this
point, the transmitter sends a hold command to the receiver
by toggling the data wire (i.e., by sending a data strobe);
this DESC transmission takes three cycles, after which the
transmission of the next chunk begins.

a) Transmitter 3 cycles 2 cycles
-— <5

Counter
Reset Strobe
Data Strobe
Wire Delay

. 3 cycles 2 cycles
b) Receiver "]
JOnnok
Reset Strobe

Data Strobe

Figure 5: Illustrative example of the signaling nec-
essary for transmitting two three-bit chunks using a
single data wire.

Transmitter Receiver
(] v
T T
'S A d'\g?etss id Address Strobes (14 lines) > i A d’\élf;ss ©
8 Chunk. ' Chunk. =
unks " unks Q

(] Write 7 "ﬂ - " > . Write £
£ . Dpaa H Write Data Strobes (16 lines) : Data - .
o 08 [l > il =
- = Syncronization Strobe [

o Y. o
[} Clock —il ii— (3]
8 -'E Access DESC 3 Reset/Write Skip Strobe : | DESC Read 8 "E
+ O [| Controller | %] | =& | cController [] Y o O
% O Ready -l < Read Skip Strobe T = o
- Chunks Chunks
(&) Read . < " ﬂ— f Read 8
N Data ﬂ : 1 Read Data Strobes (16 lines) —DI e Data LI
L n [a]
o Receiver Transmitter

Figure 6: Illustrative example of the interface that connects a DESC transmitter and receiver on the cache
controller to a DESC transmitter and receiver on a mat controller. Only a part of the block transfer is shown
in the figure for simplicity. T and T’ indicate toggle generator and toggle detector, respectively.

Ultimately, strobe signals sent by the transmitter arrive
at the receiver. There, the first reset command resets the
receiver’s counter to zero. Three cycles later, a hold strobe
arrives that makes the receiver latch in “two” as the value of
the first chunk. Similarly, another data strobe indicating a
hold command results in receiving the value “one”.
Synchronization. The transmitter and the receiver in-
volved in a data transfer need to operate synchronously
with respect to either a global clock signal, or a local point-
to-point synchronization strobe. In a synchronous cache
design, all DESC controllers would be synchronized using
the cache clock distribution network, whereas in an asyn-
chronous cache (i.e., an ATM controlled cache [20]), a syn-
chronization strobe between the cache controller and mats
would be necessary. This paper applies DESC to asyn-
chronous last-level caches due to their superior power ef-
ficiency [20, 21]. The transmitter and receiver counters op-
erate at the same clock frequency (possibly with different
clock phases). This requires a dedicated wire carrying the
clock information from the transmitter to the receiver. To
reduce the number of transitions on this wire, DESC gen-
erates a synchronization strobe signal that toggles at half
the frequency of the clock, but triggers the receiver at both
rising and falling edges.

3.2 Applying DESC to Last-Level Caches

Figure 7 shows an example last-level cache system with a
DESC interface, comprising eight banks, four subbanks per
bank, and four mats per subbank. Data communication be-
tween the cache controller and mats is performed through
the DESC transmitter and receiver. The cache controller,
as well as every mat controller, is equipped with a DESC
interface unit that consists of a transmitter and a receiver
for exchanging data between the cache controller and the
activated mats. In a last-level cache, wire resources are of-
ten shared between subbanks to reduce the wiring overhead,
as shown by the vertical H-tree in Figure 7. Transferring
toggles over shared wires requires remembering the previ-
ous states of different segments of the vertical H-tree. This
is accomplished by a toggle regenerator circuit that receives
toggles from one of the two branches of the vertical tree (i.e.,
the branch connected to the active subbank), and transfers
the toggles upstream. The selection between the branches
is performed based on the address bits.

Figure 6 shows an example in which a DESC transmitter

Last-Level Cache Array Bank Sub-bank
— ," 4 L — ‘ : ~ . —
1 iMat . Horizontal
BN NB s Rl
Controller | | Main L/ \ [—
e [oEge) v ey
TX: Transmitter H-tree

Figure 7: Illustrative example of a last-level cache
with DESC. The DESC interface units on the cache
controller and the selected mats are involved in ev-
ery cache block transfer.

RX: Receiver TR: Toggle Regenerator

and receiver at a cache controller are connected to a DESC
transmitter and receiver at a mat. The DESC interface is
used for transferring 512-bit cache blocks between the cache
controller and multiple mat controllers; the figure, however,
simplifies the exposition by showing only one mat controller
and a part of the cache controller.

3.2.1 Transmitter Architecture

The DESC transmitter receives requests from the last-
level cache controller, and generates the necessary transi-
tions on the communication wires. DESC can be applied to
the entire request, including data, address, and control bits.
Applying DESC to the address bits requires major modi-
fications to the horizontal and vertical H-trees to support
address-based branch selection. Moreover, the physical wire
activity caused by the address bits in conventional binary
encoding is relatively low, which makes it inefficient to ap-
ply DESC to the address wires. Consequently, the proposed
technique opts out of applying DESC to address and control
bits, and instead transmits these with conventional binary
encoding.

Unlike the address and control bits, the data bits are first
stored in the chunk transmitter latches, and are later mod-
ulated in time over the data wires. As shown in Figure 6, a
64-bit data block (a part of the cache block stored in the tar-
get mat) is divided into 16 chunks, each of which is stored
in a four-bit register. (Transferring a 512-bit cache block
requires 128 chunks in total.) The transmitter uses an in-
ternal counter triggered by an input clock signal. The clock
is provided to the DESC transmitters at the cache controller

interface. When there is an ongoing data transfer, the clock
signal is used to generate a synchronization strobe with a
toggle generator, as shown in Figure 8-a, and is sent to the
DESC receiver at the mat controller. The receiver recovers
the clock from the synchronization strobe using a toggle de-
tector as shown in Figure 8-b. The recovered clock triggers
the internal counters of the receiver and the transmitter at
the mat controller.

a) Toggle Generator

Enable /_\
Output j_L
b) Toggle Detector
Input IU_L
Delayed Inputj/_\
Output m
c) Toggle Regenerator
Input 1 ’ \
Select—_/_‘

Figure 8: Illustrative example of the toggle gener-
ator (a), detector (b), and regenerator (b) used by
DESC.

Enable \ thut

Latch Input

_@} > Output
Input

—
d Delayed Input

3.2.2 Receiver Architecture

The job of the DESC receiver is to detect the communica-
tion strobes sent by the transmitter, and to recover the data
values. The DESC receiver consists of an internal counter
and 16 chunk receivers. Each chunk receiver monitors a
strobe wire to detect value changes. Once a strobe signal
arrives at the receiver, the counter value is loaded into a
four-bit register. Because of the equalized transmission de-
lay of the wires in the cache H-tree, the content of the DESC
receiver counter at the time the strobe is received is always
the same as the content of the transmitter counter at the
time the strobe is transmitted, which allows the chunk re-
ceiver to recover the original data sent by the transmitter.
After all data chunks are received, a ready signal marks the
end of the data transfer.

3.2.3 Handling ECC Checks

Applying DESC to an LLC requires no modifications to
the SRAM arrays since data are stored in standard binary
format. This makes it possible to use conventional error cor-
recting codes (ECC) to protect the memory arrays. How-
ever, DESC creates a new set of challenges that must be
met to protect the H-trees. Unlike conventional binary en-
coding, DESC transfers a chunk of data using a single tran-
sition on a wire; as a result, an error in the H-trees affects
a chunk of information, and may corrupt up to four bits.
Overcoming this problem requires adopting a carefully de-
signed data layout for the parity bits used in single-error
correction, double-error detection (SECDED) ECC.

Similar to conventional SECDED ECC, DESC uses par-
ity bits to protect the H-trees and the SRAM arrays. Extra
wires are added to the data bus to transfer a set of parity
chunks (Figure 9). Each parity chunk is transferred by a
single transition over ECC wires, and contains four parity
bits, each of which belongs to a different data segment. For
example, the (137, 128) Hamming code requires nine parity
bits to protect a 128-bit data segment [22], and DESC sup-
ports this scheme by adding nine additional wires. A cache
block is partitioned into four 128-bit data segments, each
of which is augmented with nine parity bits. (Conventional
ECC schemes use similar interleaving techniques for better
protection against multiple adjacent errors [23].) Therefore,
every data chunk contains at most one bit from each data
segment; similarly, each parity chunk contains one parity
bit from each segment. This guarantees that a single error
in the H-trees cannot corrupt more than one bit from each
segment. Similarly, a double error in a data segment can
be detected because two errors in the H-trees may affect no
more than two bits per segment. This allows DESC to sup-
port conventional SECDED ECC. So long as the segments
are narrower than the data bus, DESC can accommodate
conventional SECDED ECC without additional parity bits.
This scheme is extendible to cache architectures with sepa-
rate storage for ECC [24].

d: correct data bit p: parity bit x: corrupted bit

Conventional [SRAM Arrays
ECC Encoders '

Conventional
ECC Decoders

x x
[4 4 4 [
] o
1] o
o] <
= =
© H H H ©
[a] (a]
= =
5) er 5
] fley
5 N N 5
[dl-dlpl-ellelpldl-- [d q>,)
2 d]-- [d]P[- P [PT-[P]d[- [x 2
=

@ .. dp- DL 01d X 2
= o O U Y O o

data parity parity data
Figure 9: Illustrative example of ECC bits in DESC.

3.3 Energy and Delay Optimizations

DESC exploits data locality and null block prevalence in
the last-level cache to optimize power and delay. By default,
every chunk requires a single bit-flip between a transmitter
and the corresponding receiver. This sets a lower bound on
the number of required bit-flips to transmit a cache block; for
example, to transmit a 512-bit cache block from a transmit-
ter comprising 128 chunk transmitters, where a data chunk
is four bits, 128 transitions are needed on the data wires.
Experiments show that a significant number of the chunk
values transferred using DESC are either zeroes or the same
as the values transferred on the same wires in the previous
cycle. DESC supports a value skipping mechanism to reduce
the unnecessary energy and delay due to these repeated or
null chunks.

DESC defines a time window during which a block is
transferred. Figure 10-a shows an example time window.
The window opens with a reset signal and closes with the
last chunk signal. In this example, a data block consist-
ing of four chunks (0, 0, 5, and 0) is transferred using five

bit-flips. Figure 10-b illustrates how the same chunk val-
ues are communicated with value skipping in DESC. The
time window is defined by two bit-flips on the reset/skip
wire, and each non-zero chunk (such as 5 in the figure) is
transferred by a bit-flip within the time window. Those
wires that remain silent over the duration of the time win-
dow are set to zeroes at the end of the transfer; hence, the
four chunk values are transferred using three bit-flips. This
scheme allows DESC to selectively specify a subset of the
chunks to get assigned a predefined value at the cost of a
bit-flip on the shared reset/skip wire. Unlike DESC, ex-
isting dynamic power optimization schemes [15, 12] require
transferring extra information per chunk to support similar
skipping operations. (As an alternative, these existing meth-
ods can implement value skipping at the cache block level to
reduce the overheads; however, this reduces the effectiveness
of these schemes.) For example, bus invert coding [15] can
implement zero skipping with control overheads. To accom-
plish this, every chunk would need to determine if its value
is skipped. Combining this new feature with the original
bus invert coding results in three data transfer modes per
chunk (non-inverted, inverted, and skipped). This requires
extra wires and results in energy overheads. (A compari-
son against zero compression and bus invert coding + zero
skipping is presented in Section 5.)

a) Basic DESC a) Zero Skipped DESC

reset ' reset/skip ’ L
chunk [0] [0] chunk[o] o]
chunk [1] [0] chunk[1] o]
chunk [2] [[5] chunk[2] [[5)
chunk [3] [0] chunk[3] B

counter 0123 45 counter 12 3 45

pomsmemmeeem e eeeaee 1 pomseemenemnneeeen, 4
time window time window

Figure 10: Illustrative example of time windows in
the basic (a) and zero skipped (b) DESC techniques.

In addition to energy, value skipping can also improve
transmission latency. Applying value skipping to DESC re-
sults in a narrower time window since the skipped value is
excluded from the count list. As shown in Figure 10, zero
skipped DESC requires a time window of five cycles as op-
posed to the six cycles needed in the basic DESC.

DESC implements value skipping at both the cache con-
troller and mat interfaces. Figure 11 shows how the trans-
mitter and the receiver skip a value. Prior to transmitting
a chunk, the transmitter compares the chunk’s value to a
pre-determined “skip value”; on a match, the transmitter
sets an internal flag indicating that the chunk should be
skipped; otherwise, the relevant chunk transmitter is acti-
vated to send the data strobe. After sending the required
strobe signals for all unskipped data chunks, a skip signal
indicating the end of the transmission is sent to the receiver
by toggling the reset/skip wire. The receiver receives data
strobes for unskipped chunks only; receiving a skip signal
from the transmitter before all data strobes are toggled is
interpreted as a skip command. When a skip command ar-
rives at the receiver, the skip value is copied to all pending
chunks. A transition on the DESC reset/skip wire is inter-
preted as (1) a counter reset command signaling the begin-

ning of a new cache block transfer if there is no incomplete
chunk at the receiver, or (2) a skip command if some of
the chunk receivers have not yet received a signal from the
transmitter.

a) Value Skipped DESC Transmitter
Chunk Transmitter

Input
Chunks

o>

from other chunk
transmitters

Start

b) Value Skipped DESC Receiver

Chunk Receiver

Data Strobe +ﬂ—[d

Received
Chunks

4Up Counter |

Reset/Skip . ﬂ
Strobe
from other chunk
receivers
Figure 11: Illustrative example of value skipping. T
and T’ indicate toggle generator and toggle detector,
respectively.

This paper experiments with two different variations of

value skipping on DESC: zero skipping and last-value skip-
ping.
Zero Skipping. Zero is the most common chunk value read
from the last-level cache. Studying the behavior of different
applications on an 8MB L2 cache with a 4-bit DESC inter-
face, we find that 31% of the transmitted chunks are zeroes
(Figure 12). This motivates us to employ zero skipping in
DESC, wherein the skip value is set to zero.

B Zero Chunks O Non-Zero Chunks
0.35 7

0.30 1
0.25 1
0.20 A
0.15 1
0.10 1
0.05 A
0.00 -

Ooddonodnoonoill
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Four-Bit Chunk Values

Average Frequency of
Transferred Chunk Values

Figure 12: Distribution of four-bit chunk values
transferred between the L2 cache controller and the
data arrays.

We also considered adaptive techniques for detecting and
encoding frequent non-zero chunks at runtime; however, the
attainable delay and energy improvements are not apprecia-
ble. This is because of the relatively uniform distribution of
chunk values other than zero, as seen in Figure 12.
Last-Value Skipping. Last-value skipping sets the skip

value for each chunk to the previous value transmitted on
the wire assigned to that chunk. This technique creates more
opportunities for skipping. Figure 13 shows the measured
probability of transmitting two consecutive data chunks with
the same values. On average, 39% of the transmitted chunks
on a wire have the same value as the previous chunk.

1

(2]
€
S o8
S
o 06
°
c
S o4
b
g 02
'S
0
I I S B A A S B NI AR S
P & S O 2
‘?‘Q’%@ ¢ &;b < o < & @ & N &\,b« L)Q,bc o@e
<« ,%‘j ’@« (_,)0
S
W

Figure 13: Fraction of chunks transferred between
the processor and the L2 cache that match the pre-
viously transmitted chunk.

4. EXPERIMENTAL SETUP

We evaluate the area, frequency, and power overheads of
DESC by implementing it in Verilog HDL, and synthesizing
the proposed hardware. We apply the proposed techniques
to UCA and S-NUCA-1 [8] L2 caches, using a modified ver-
sion of CACTI 6.5 [14] to evaluate the energy efficiency and
performance potential. We also implement the dynamic zero
compression [12] and bus invert coding [15] techniques as
baselines. We simulate 16 memory-intensive parallel appli-
cations, running on a heavily modified version of the SESC
simulator [25]. Using McPAT [26], we estimate the overall
processor power with and without DESC at the L2 cache.

4.1 Architecture

We modify the SESC simulator [25] to model two different
kinds of systems: (1) a Niagara-like eight-core processor, and
(2) a single-threaded out-of-order processor. Both systems
have an 8MB L2 cache, interfaced to two DDR3-1066 DRAM
channels. Table 1 shows the simulation parameters.

Multithreaded 8 in-order cores, 3.2 GHz,
Core 4 HW contexts per core
Single-threaded 4-issue out-of-order core,
128 ROB entries, 3.2 GHz
IL1 cache 16KB, direct-mapped, 64B block,
(per core) hit/miss delay 2/2
DL1 cache 16KB, 4-way, LRU, 64B block,
(per core) hit/miss delay 2/2, MESI protocol
L2 cache 8MB, 16-way, LRU, 64B block,
(shared) hit/miss delay 19/12
Temperature | 350 °K (77°C)
DRAM 2 DDR3-1066 memory channels, FR-FCFS

Table 1: Simulation parameters.

Large SRAM caches have a significant impact on the en-
ergy and performance of microprocessors. Due to the large
number of transistors dedicated to the last level cache, de-
signing an energy-efficient microprocessor necessitates opti-
mizations that reduce excessive leakage energy in the SRAM
cells and the peripheral circuitry. Such techniques can re-
duce cache leakage by orders of magnitude. (See [27, 28, 29,
30, 31, 32, 33, 34] for examples of recent industrial designs
with low-leakage devices in caches.)

We use CACTI 6.5 and SESC to explore the design space
of the L2 cache, searching for the most energy efficient tech-
nology for the SRAM cells and the peripheral circuitry. The
design options in this exploration are ITRS high perfor-
mance (HP), ITRS low power (LOP), and ITRS low standby
power (LSTP) devices [14]. In addition to the cell technolo-
gies, we explore the energy efficiency of the L2 cache for
various bank counts (from 2 to 64) and data H-tree widths
(from 8 to 512 bits). The goal is to set the most energy
efficient configuration for the baseline L2 cache. Figure 14
shows the relative cache energy, the overall execution time,
and the processor energy averaged over all 16 applications.?
The results show that using LSTP technology for both the
SRAM cells and the peripheral circuitry leads to a significant
energy reduction in the L2 cache at the cost of a negligible
loss in performance.® As a result, the most energy efficient
L2 cache configuration consists of 8 banks with 64-bit data
H-trees, implemented with LSTP devices, which minimizes
both the L2 cache and total processor energy. This config-
uration adds only 2% overhead to the total execution time
compared to the fastest L2 cache implemented with HP de-
vices.

We modify SESC to support multiple interfaces at the L2
cache for conventional binary transmission, bus-invert cod-
ing [15], dynamic zero compression [12], S-NUCA-1 [8], and
DESC. The L2 cache decodes an input address to activate
a wordline in the data and tag arrays, which are co-located.
The contents of a row are sensed and read out through the
bitlines. On a hit, the comparator logic selects one way of
the data array to be transferred on the H-trees.

Because bus-invert coding and dynamic zero compression
are sensitive to the number of bus segments, we find the
best segment size for each and use it in the baselines.* For
further energy efficiency, we also combine bus invert coding
with a zero skipping mechanism that eliminates unneces-
sary bit-flips when transferring zero values. We evaluate
two variants of zero skipped bus invert coding. First, we
assume that an extra wire is employed for transferring the
zero skipping signal per data segment, which results in a
large number of extra wires. This scheme takes into account
the flips that would occur on the extra wires when deciding
the best encoding scheme for each segment. In addition to
this sparse representation, we also experiment with a denser
representation that uses a single binary number to encode
the transmission mode for all segments. This denser rep-
resentation reduces the number of extra wires, but incurs
additional decoding and encoding overheads.

Figure 15 shows the L2 cache energy for these techniques
normalized to binary encoding. We select the best configura-
tion for each technique as a baseline, and use these baselines
to make comparisons against DESC. Finally, we implement
three versions of DESC: basic (i.e., no value skipping), zero
skipped (Section 3.3), and last-value skipped (Section 3.3).

2Although we do a full design space exploration on the number of
banks and bus width for all device types, the figure illustrates a rep-
resentative subset of the results for clarity.

3Al‘chough using high-performance devices in both the cells and the
periphery results in approximately 2x faster access time compared
to low standby power devices, the end-to-end system performance
exhibits less than 2% sensitivity to this difference.

4The paper ignores energy and latency overheads of the necessary
control logic in these baseline schemes—e.g., population counters and
zero detection logic.

400 1

0 o
5.8 '_g = | Ostatic Energy M Dynamic Energy
1 - 300
2o+
v Yoo J
c N ™ £ 200 .
wE vn 8 banks, 64-bit bus
N g€~ 100 1
NETE -
3 _g g 1N, e,
z—-a 07

LSTP-HP

| LstP-LoP

LSTP-LSTP |

0 v 2 1
€o3d 8 banks, 64-bit bus
Eo02,
- -’
Fs3h
c v J
O N 1
ER- =
U Euun
QL
X O ¢
Wz o 0
2 HP-HP HP-LOP HP-LSTP LOP-HP LOP-LOP LOP-LSTP LSTP-HP LSTP-LOP LSTP-LSTP
» 0 _a
[~} b~
2 e% 5 30
$3egd 20
1 B
9 XN * l;, 8 banks, 64-bit bus
-5 g ~ 410
8 E£E§v
(<] a8 3 o
F =z o HP-LSTP LOP-LOP LOP-LSTP LSTP-HP LSTP-LOP | LSTP-LSTP |
Figure 14: Design space exploration of the L2 cache for energy and execution time.
. Benchmarks Suite Input
W64 W32 B 16- as- 0a4-
o 1.2 - 64-bit 32-bit 16-bit 8-bit a-bit Linear Regression Phoenix 50MB key file
hid ’ — MG NAS OpenMP Class A
g w 1 1 F - CG NAS OpenMP Class A
= _g e, ¥, * Swim-Omp SPEC OpenMP | MinneSpec-Large
py o 0.8 1 Equake-Omp SPEC OpenMP | MinneSpec-Large
]
s < 0.6 - Art-Omp SPEC OpenMP | MinneSpec-Large
2 "‘>"_ : — Barnes SPLASH-2 16K Particles
=5 04 S Cholesky SPLASH-2 tk 15.0
5 £ © Ocean SPLASH-2 514x514 ocean
c o 02 1 £ FFT SPLASH-2 1M points
o i Radix SPLASH-2 2M integers
3 0 ' ' ' ' LU SPLASH-2 512x512 matrix,
Dynamic Zero Bus Invert Bus Invert Bus Invert + 16x16 blocks
Compression Coding Coding + Zero Encoded Zero Ocean SPLQSH'Q 258x258 ocean
Skippi Skiopi RayTrace PLASH-2 car
bping IPPINg Water-Spatial SPLASH-2 512 molecules
. . Water-NSquared SPLASH-2 512 molecules
Figure 15: L2 cache energy as a function of the data E b7ip2 SPECnt 2006 Toforence
segment size for the Dynamic Zero Compression, ° mcf SPECint 2006 reference
Bus Invert Coding, Bus Invert 4+ Zero Skipping, and 9 omnetpp SPECint 2006 reference
. . o sjeng SPECint 2006 reference
Bus Invert 4 Encoded Zero Skipping schemes. The = Tom SPECTp 2006 ToToronce
best configuration for each scheme (marked with a %’0 milc SPECfp 2006 reference
star) is selected as a baseline for evaluation. g namd SPECfp 2006 reference
7] soplex SPECfp 2006 reference

4.2 Applications

Evaluated parallel workloads represent a mix of sixteen

Table 2: Applications and data sets.

data-intensive applications from Phoenix [35], SPLASH-2 [36], using Cadence Encounter RTL, Compiler [40] with FreePDK [41]

SPEC OpenMP [37], and NAS [38] suites. We also assess
the tolerance of single threaded applications to the access
latency of DESC by evaluating eight applications from the
SPEC 2006 suite. In this experiment, we use SimPoint [39]
and determine a representative 200 million instruction re-
gion from each SPEC 2006 application to reduce the execu-
tion time. The parallel applications are simulated to com-
pletion. Table 2 summarizes the evaluated benchmarks and
their input sets. All applications are compiled using GCC
with the -O3 optimization flag.

4.3 Synthesis

We evaluate the area and power overheads of DESC by
implementing it in Verilog HDL, and synthesizing the design

at 45nm. The results are then scaled to 22nm (relevant pa-
rameters are shown in Table 3).

Technology | Voltage | FO4 Delay
45nm 1.1V 20.25ps
22nm 0.83 V 11.75ps

Table 3: Technology parameters [42, 43].

5. EVALUATION

We first present synthesis results on the area, power, and
delay figures for the DESC transmitter and receiver. Next,
we compare cache energy, power, and delay when using
DESC and conventional cache interfaces; for the latter, we

B Conventional Binary
O Encoded Zero Skipped Bus Invert O Basic DESC
1.5

0.5

L2 Cache Energy Normalized to
Convetional Binary Encoding
-

0 i
&

(/6 o) N & é K

& S

B Dynamic Zero Compression

N
o

(B}
B Zero Skipped Bus Invert

O Last Value Skipped DESC

B Bus Invert Coding
OZero Skipped DESC

<©

N

Figure 16: L2 cache energy achieved by different data transfer techniques.

experiment with baselines incorporating bus invert coding
and dynamic zero compression. We then evaluate the impact
of DESC on overall system energy efficiency, and conduct a
cache design-space exploration over all sixteen applications.
We also evaluate applying DESC to an S-NUCA-1 cache.
We study the sensitivity of DESC to the number of cache
banks, H-tree width, and chunk size. We then evaluate the
performance and energy potential of DESC under SECDED
ECC. Finally, we assess the performance impact of DESC
when running latency sensitive, single threaded applications.

5.1 Synthesis Results

Synthesis results on the area, power, and delay contribu-
tions of the DESC transmitter and receiver are shown in
Figure 17. A synthesized DESC interface occupies 2120pum?>
at each cache mat, which adds less than 2% area overhead
to the mats, and a total area overhead of 1% to the SMB L2
cache. The peak power consumption of a DESC interface,
including the transmitter and the receiver, is 46mW. (No-
tice that DESC consumes dynamic power only during data
transfers.) A pair of fully synthesized DESC interfaces adds
625ps of logic delay to the round trip cache access time.
Power, delay, and area can be further improved by using
custom circuit design rather than synthesis.

Area (um2) Peak Power (mW) Delay (ns)

2500 30 0.35
0.3

2000 25)
2 0.25
1500 0.2

15

1000 0 0.15
0.1
500 5 0.05
0 0 0

Transmitter Receiver Transmitter Receiver Transmitter Receiver

Figure 17: Synthesis results for DESC transmitter
and receiver, each comprising 128 chunks.

5.2 Energy

Simulation results on the L2 cache energy are shown in
Figure 16. Dynamic zero compression, bus invert coding,
and zero skipped bus invert coding result in an average of
10%, 19%, and 20% reduction in the overall cache energy,

respectively; basic DESC provides 11% cache energy sav-
ings, which is better than zero compression, but worse than
bus invert coding. This is due to the minimum dynamic en-
ergy required on the interconnect, even for applications with
few bit flips—CG, Cholesky, Equake, Radix, and Water-
Nsquared.

Applying value skipping to DESC results in a significant
energy reduction. Zero skipped DESC reduces overall cache
energy by 1.81x on average, while last-value skipped DESC
achieves a 1.77x energy reduction. Although the frequency
of skipped values in the last-value skipped DESC is higher
than that in the zero-skipped DESC (Figures 12 and 13), the
latter shows superior energy efficiency because of the lower
access energy. In the last-value skipped DESC, the cache
controller needs to track the last values written to every
mat. This requires extra storage at the cache controller to
record the last value exchange with every mat, in addition
to broadcasting data bits for each write operation across
subbanks (through the vertical and horizontal H-trees, as
shown in Figure 7). As a result, communication in the last-
value skipped DESC consumes higher energy.

Figure 18 shows static and dynamic energy components of
the L2 cache for different data transfer techniques, averaged
over all applications. The results show that the superior
energy efficiency of zero skipped DESC is achieved through
a 2Xx reduction in dynamic cache energy, even though it adds
a 3% static energy overhead to the baseline conventional
cache.

M Static Energy O Dynamic Energy

Last Value Skipped DESC

Zero Skipped DESC

Basic DESC

Encoded Zero Skipped Bus Invert

Zero Skipped Bus Invert

Bus Invert Coding

Dynamic Zero Compression

Conventional Binary

0 0.1 02 03 04 0506 07 08 09 1
Fraction of Overall Cache Energy

Figure 18: Contribution of dynamic and static en-
ergy components to the overall L2 cache energy for
different data transfer techniques.

Figure 19 shows the impact of zero skipped DESC on over-
all system energy; the entire processor consumes 7% less
energy with DESC.

W |2 Cache OOther Hardware Units
Geomean]
Water-Spacial]
Water-Nsquared]
Swim]
RayTrace]
Radix]
Ocean]
MG]
LU]
Linear]
FT]
FFT]
Equake]
Cholesky]
CG]
Barnes]
Art]

0 01 02 03 04 05 06 07 08 09 1
Overall Processor Energy Normalized to Binary Encoding

Figure 19: Overall processor energy reduction
achieved by applying zero skipped DESC to the L2
cache.

Last Value Skipped DESC

Zero Skipped DESC

Basic DESC

Encoded Zero Skipped Bus Invert
Zero Skipped Bus Invert

Bus Invert Coding

Dynamic Zero Compression
Conventional Binary

0 010203040506070809 1 1.1

Execution Time Normalized to Binary Encoding
Figure 20: Performance of different data communi-
cation schemes.

5.3 Performance

We evaluate the performance of several data communica-
tion shemes: (1) conventional binary encoding; (2) dynamic
zero compression; (3) bus-invert coding, with and without
zero skipping; (4) DESC, and its variants with zero- and last-
value skipping (Figure 20). The results show that the zero
skipped and last-value skipped DESC techniques add less
than 2% overhead to the overall execution time. (As shown
in Figure 20, the zero compression and bus invert coding
baselines also add a 1% overhead to the overall execution
time due to the extra wires.) This performance loss is due
to the longer access latency of the L2 cache with DESC. We
further analyze the performance of zero skipped DESC by
measuring its impact on the average access latency. DESC
is not applied to the address and control wires, and thus
has no effect on the miss penalty. However, the hit time
includes the transfer latency of a cache block, which is de-
termined by the chunk values in DESC. Experiments show
that the average value transferred by the zero skipped DESC
is approximately five. This value determines the throughput
of each bank in DESC, and constitutes an extra latency in
addition to the latency of the H-trees and internal DESC
circuitry.

Figure 21 shows the average hit time of the conventional
binary encoding and zero skipped DESC when applied to
64- and 128-wire data buses. Zero skipped DESC increases
the average hit time by 31.2 and 8.45 cycles, respectively,
for 64- and 128-wire buses. The corresponding slowdowns
are 10% for a 64-wire data bus, and 2% for a 128-wire data
bus.

Ey % W 64-bit Binary B128-bit Binary O 64-bit DESC 0128-bit DESC
K}
a ’qmj 80
£ =70
T %60
o O
£ « 50
& 2 40
© a3
N 9
= g 20
&3 10
£Z o
o
> o & e & X2 D O L F @ D > 2
< ¥ & C \é;{.* & <<<\ < \(g?' VL Q@b\ «@(‘ ‘_)Q@ & ,bO’b @@%
R o X A% (&)) & K&
& & LT
AN
&

Figure 21: Average hit delay of the L2 cache with
conventional binary encoding and DESC.

5.4 Exploring the Design Space: Last-Level
Cache Energy and Delay

DESC expands the last-level cache design space for higher
energy efficiency. Figure 22 shows the design possibilities

when using conventional binary encoding and last-value skipped

DESC data transfer mechanisms. The cache size is fixed at
8MB in both configurations; the data access width and the
number of banks for both techniques are varied to generate
the data. (In addition, the chunk size is varied for DESC.)
Delay and energy are averaged over all sixteen applications,
and normalized to the baseline L2 cache (8MB, 8 banks, and
a 64-bit data bus). The plot shows that applying DESC to
the L2 cache creates new design possibilities with higher
energy efficiency, without significantly increasing the access
latency.

O Conventional Binary A Zero Skipping DESC
A

N
"

A

AA
15 A AL

11 ' VIVPN-REN
i DESC

@-00--O Co®. ..0g

Binary Enoding

o
wn

0 T T T T T d

0 0.5 1 1.5 2 2.5 3

L2 Cache Energy Normalized to 8 Banks, 64-bit Data Bus,
Binary Enoding

Execution Time Normalized
to 8 Banks, 64-bit Data Bus,

Figure 22: Cache design space possibilities when
using conventional binary encoding and last-value
skipped DESC techniques.

5.5 Application to S-NUCA-1

We apply DESC to an 8MB S-NUCA-1 cache comprising
128 banks, each of which has a 128-bit port. Cache ports
are statically routed to the cache controller without using
any switches. The access latency of the banks ranges from
3 to 13 core cycles. Figure 23 shows the relative execution

time averaged over the sixteen applications for an S-NUCA-
1 cache with zero skipped DESC. The results show that the
zero skipped DESC incurs an execution time penalty of 1%
over conventional binary encoding.

e
o0

o
)

0

Execution Time of DESC + S-
NUCA-1 Normalized to S-
C
o
B

Figure 23: Normalized execution time when DESC
is applied to an 8MB S-NUCA-1 cache.

As shown in Figure 24, DESC improves the energy of the
S-NUCA-1 cache. The results indicate that zero skipped
DESC improves cache energy by 1.62x, reduces the aver-
age L2 power by 1.64x, and improves the L2 energy-delay
product by 1.59x.

NUCA-1
o o o o
N = ()] o0

L2 Energy of DESC + S-
NUCA-1 Normalized to S-
o

. N
< Q}(&c’ 00\®r3‘$ \)@\& & é_ \(37’& N O&T’QQ@&Z@&%@‘\(:S@&) & @rz?‘\
& > R
R4 C\\O <& N &o‘ Q}fa (9“0
SR
@\
N¢

Figure 24: The energy of an 8MB S-NUCA-1 cache
with zero skipped DESC.

5.6 Sensitivity Analysis

We study the sensitivity of DESC to the number of cache
banks, chunk size, and L2 size.

5.6.1 Number of Banks

Figure 25 shows the relative energy and execution time
averaged over all applications. Increasing the number of
cache banks from one to two results in a significant reduc-
tion in execution time (due to a significant reduction in bank
conflicts), and yields a commensurate improvement in the
energy-delay product. As the number of banks increases
from two to eight, both L2 energy and execution time im-
prove slightly, reaching a minimum at eight banks; from
eight to 64 banks, however, the energy-delay product in-
creases due to the higher energy overhead of the individual
banks and the DESC circuitry.

5.6.2 Chunk Size

We study the sensitivity of DESC to the chunk size pa-
rameter by measuring the L2 energy and total execution
time for chunk sizes ranging from one to eight, when the
cache capacity, cache block size, and the number of banks
are fixed at 8MB, 512 bits, and 8 banks, respectively. This

127 \
o o0 | . L o
g c 1
€ & = \’
=35 T
=3 o 08 1
c N2
2w 06
> E >
o = 0.4 1
g2 <
& 25 02 1
0 T T T T T T 1
2f ']
%Y 8 081 A//__‘/
- Q
o N 4
SR E 061 e —
~ E 204 -
-5
ZEO.Z'
0 T T T T T T 1

1 2 4 8 16 32 64
Number of Banks
Figure 25: Energy and execution time sensitivity to
the number of banks.

experiment considers multiple possibilities for transferring
fixed-size cache blocks, employing buses with the number
of data wires ranging from 32 to 256. Figure 26 shows the
L2 energy and the total execution time normalized to the
baseline (conventional) L2 cache for all studied chunk sizes.
As the chunk size increases from one to eight, the range of
the values that can be represented by each chunk increases;
however, the transmission time increases as well. Each wire
can now transfer a larger value, which results in a longer la-
tency, but exhibits lower dynamic energy due to fewer tran-
sitions. This explains why the relative energy decreases and
the execution time increases when moving from one-bit to
four-bit chunks (Figure 26). Employing eight-bit chunks,
however, results in higher energy and execution time due to
the long transfer delay and the attendant increase in leakage
energy. A chunk size of four with 128 wires results in the
best energy-delay product at the L2 cache.

032-wire < 64-wire @ 128-wire A 256-wire
1.5 1 (u} b

11 £]

0.5 1 1

o
g

One:Bit Chunks Two:Bit Chunks

L2 Cache Energy Normalized to
Binary Encoding
o

Four-Bit Chunks
0 T T T T d

o o5 1 15 2 25 0 05 1 15 2 25

Eight-Bit Chunks

Execution Time Normalized to Binary Encoding

Figure 26: Energy and execution time sensitivity of
zero skipped DESC to chunk size.

5.6.3 Cache Size

Experiments show that the size of the L2 cache has an im-
pact on both the system power and the execution time (and
consequently, energy). As the L2 capacity increases, cache
power increases due to more cells and higher access energy;

however, the total execution time decreases because of fewer
cache misses. For the evaluated multicore design, most of
the L2 dynamic energy is consumed in the H-trees, because
the LSTP transistors significantly reduce the static power
of the arrays and the peripheral circuits. Figure 27 shows
the impact of capacity on the L2 energy when the cache size
ranges from 512KB to 64MB. The results indicate that in-
creasing the cache size results in higher energy consumption
for both conventional binary and DESC. However, DESC
improves the average cache energy by 1.87x to 1.75x, when
the cache size ranges from 512K to 64MB.

4 -
=O—Conventional Binary ~=#—DESC

1.75x%

L2 Energy Normalized to an
8MB L2 with Binary Encoding

512k8 1MB 2MB 4MB 8MB 16MB 32MB 64MB
Figure 27: The impact of L2 capacity on cache en-
ergy.

5.7 Performance and Energy Characterization
under SECDED ECC

We apply DESC to an 8MB cache comprising eight banks
protected by SECDED ECC. We evaluate the execution time
and the L2 energy when the (72, 64) and (137, 128) Ham-
ming codes are applied with binary encoding and DESC. As
shown in Figure 28, the zero skipped DESC incurs an aver-
age execution time penalty of 1% over conventional binary
encoding.

W64-64 Binary [@128-128 Binary [0128-64 DESC [0128-128 DESC

& @ &EF S
P N
¢ e 0@

o

Execution Time Normalized
to 64-bit Binary encoding
with 64-bit DECDED ECC
000000000 K
OFRPNWARUIONOR -

Figure 28: Normalized execution time for binary
encoding and DESC for various configurations (W-
S), where W represents the number of data wires
and S is the segment size to which the Hamming
code is applied.

Figure 29 shows that the zero skipped DESC improves
cache energy by 1.82x and 1.92x for the (72, 64) and (137,
128) Hamming codes, respectively.

5.8 Impact on Latency Tolerance

Unlike a throughput-oriented design such as the multicore
system with multithreaded cores evaluated in Sections 5.3 -
5.7, a latency sensitive design may suffer from a significant
performance degradation when using DESC. To study the

M 64-64 Binary [@128-128 Binary [128-64 DESC [1128-128 DESC

s

e e o 9o
o N P o B L N

L2 cache Energy Normalized
to 64-bit Binary encoding
with 64-bit DECDED ECC

S A & é‘(\zz‘ NI ?gbb R
S >
&

Figure 29: Normalized L2 energy for binary en-
coding and DESC for various configurations (W-S),
where W represents the number of data wires and
S is the segment size to which the Hamming code is
applied.

effects of the long data transfer latency of DESC on such
systems, we model an out-of-order processor running single
threaded applications from the SPEC CPU 2006 suite [44].
The simulation results indicate that applying DESC to the
L2 increases the execution time by 6% on average (Fig-
ure 30).

Geomean
SOPLEX
SIENG
OMNETPP
NAMD
MILC

MCF

LBM
BZIP2

0 01 02 03 04 05 06 07 08 09 1 11 12

Figure 30: Execution time normalized to binary en-
coding.

6. CONCLUSIONS

We have presented DESC, an energy-efficient data ex-
change technique using synchronized counters. DESC cre-
ates new opportunities for designing low power on-chip in-
terconnects. We have seen that applying DESC to the L2
cache can reduce overall cache energy by 1.81x by lower-
ing dynamic power at the cache H-tree. This results in 7%
savings in overall processor energy at a cost of less than
2% increase in the overall execution time, and a negligible
area overhead. We have also observed that DESC achieves
better power improvements compared to existing work on
bus-invert coding and dynamic zero compression by exploit-
ing more efficient mechanisms for skipping redundant values.
We conclude that DESC holds the potential to significantly
improve the energy efficiency of on-chip communication in
future computer systems.

7. ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
useful feedback. This work was supported in part by NSF
grant CCF-1217418.

8. REFERENCES

[1] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum
Shamir. Interconnect-power dissipation in a microprocessor.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

19l

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

International Workshop on System Level Interconnect
Prediction, 2004.

A.N. Udipi, N. Muralimanohar, and R. Balasubramonian.
Non-uniform power access in large caches with low-swing wires.
International Conference on High Performance Computing,
2009.

A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor, and
D. Verkest. Energy-aware interconnect optimization for a
coarse grained reconfigurable processor. International
Conference on VLSI Design, 2008.

G. Chandra, P. Kapur, and K.C. Saraswat. Scaling trends for
the on chip power dissipation. International Interconnect
Technology Conference, 2002.

Nikos Hardavellas, Michael Ferdman, Anastasia Ailamaki, and
Babak Falsafi. Power scaling: the ultimate obstacle to 1k-core
chips. Technical Report NWU-EECS-10-05, 2010.

Bradford M. Beckmann and David A. Wood. TLC:
Transmission line caches. International Symposium on
Microarchitecture, 2003.

Hui Zhang and J. Rabaey. Low-swing interconnect interface
circuits. International Symposium on Low Power Electronics
and Design, 1998.

Changkyu Kim, Doug Burger, and Stephen W. Keckler. An
adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches. International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2002.

Daniel Citron. Exploiting low entropy to reduce wire delay.
IEEE Computer Architecture Letters, 2004.

A. Seznec. Decoupled sectored caches: conciliating low tag
implementation cost. In International Symposium on
Computer Architecture, 1994.

Julien Dusser, Thomas Piquet, and André Seznec.
Zero-Content Augmented Caches. Rapport de recherche
RR-6705, INRIA, 2008.

Luis Villa, Michael Zhang, and Krste Asanovic. Dynamic zero
compression for cache energy reduction. International
Symposium on Microarchitecture, 2000.

Rajeev Balasubramonian, Naveen Muralimanohar, Karthik
Ramani, and Venkatanand Venkatachalapathy.
Microarchitectural wire management for performance and
power in partitioned architectures. International Symposium
on High-Performance Computer Architecture, 2005.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA organizations and wiring alternatives for
large caches with CACTI 6.0. International Symposium on
Microarchitecture, 2007.

Mircea R. Stan and Wayne P. Burleson. Bus-invert coding for
low-power I/O. IEEE Transactions on VLSI Systems, 1995.
S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting
generational behavior to reduce cache leakage power.
International Symposium on Computer Architecture, 2001.
K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage power.
International Symposium on Computer Architecture, 2002.
Nam Sung Kim, David Blaauw, and Trevor Mudge. Leakage
power optimization techniques for ultra deep sub-micron
multi-level caches. International Conference on
Computer-Aided Design, 2003.

J. G. Proakis. Digital Communications. Third Edition,
McGraw-Hill, 1995.

K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low- power
RAM circuit technologies. Symposium on Low Power
FElectronics, 1994.

J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The
asynchr%rgous 24MB on-chip level-3 cache for a dual-core
Itanium™~ -family processor. International Solid-State Circuits
Conference, 2005.

C.W. Slayman. Cache and memory error detection, correction,
and reduction techniques for terrestrial servers and
workstations. IEEE Transactions on Device and Materials
Reliability, 2005.

Y.Q. Shi, Xi Min Zhang, Zhi-Cheng Ni, and N. Ansari.
Interleaving for combating bursts of errors. IEEE Circuits and
Systems Magazine, 2004.

Doe Hyun Yoon and Mattan Erez. Memory mapped ecc:
Low-cost error protection for last level caches. International
Symposium on Computer Architecture, 2009.

Jose Renau et al. SESC simulator, Jan. 2005.
http://sesc.sourceforge.net.

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

38]

[39]

[40]
[41]

[42]

(43]

[44]

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,
Dean M. Tullsen, and Norman P. Jouppi. McPAT: An
integrated power, area, and timing modeling framework for
multicore and manycore architectures. International
Symposium on Computer Architecture, 2009.

K. Kanda, T. Miyazaki, Min Kyeong Sik, H. Kawaguchi, and
T. Sakurai. Two orders of magnitude leakage power reduction
of low voltage SRAMs by row-by-row dynamic VDD control
(RRDV) scheme. International ASIC/SOC Conference, 2002.
S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A
dual-core multi-threaded xeon processor with 16MB L3 cache.
International Solid-State Circuits Conference, 2006.
Varghese George, Sanjeev Jahagirdar, Chao Tong, K. Smits,
Satish Damaraju, Scott Siers, Ves Naydenov, Tanveer
Khondker, Sanjib Sarkar, and Puneet Singh. Penryn: 45-nm
next generation Intel Core 2 processor. Asian Solid-State
Clircuits Conference, 2007.

D. James. Intel Ivy Bridge unveiled - the first commercial
tri-gate, high-k, metal-gate CPU. Custom Integrated Circuits
Conference, 2012.

E. Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, F. Hamzaoglu,
U. Bhattacharya, K. Zhang, K. Mistry, and M. Bohr. A
4.6GHz 162MB SRAM design in 22nm tri-gate CMOS
technology with integrated active vmin-enhancing assist
circuitry. International Solid-State Circuits Conference, 2012.
N. Maeda, S. Komatsu, M. Morimoto, and Y. Shimazaki. A
0.41 ua standby leakage 32kb embedded SRAM with
low-voltage resume-standby utilizing all digital current
comparator in 28nm hkmg CMOS. Symposium on VLSI
Clircuits, 2012.

Masaki Fujigaya, Noriaki Sakamoto, Takao Koike, Takahiro
Irita, Kohei Wakahara, Tsugio Matsuyama, Keiji Hasegawa,
Toshiharu Saito, Akira Fukuda, Kaname Teranishi, Kazuki
Fukuoka, Noriaki Maeda, Koji Nii, Takeshi Kataoka, and
Toshihiro Hattori. A 28nm high-k metal-gate single-chip
communications processor with 1.5GHz dual-core application
processor and LTE/HSPA+-capable baseband processor.
International Solid-State Circuits Conference, 2013.
Fumihiko Tachibana, Osamu Hirabayashi, Yasuhisa Takeyama,
Miyako Shizuno, Atsushi Kawasumi, Keiichi Kushida, Azuma
Suzuki, Yusuke Niki, Shinichi Sasaki, Tomoaki Yabe, and
Yasuo Unekawa. A 27% active and 85% standby power
reduction in dual-power-supply SRAM using BL power
calculator and digitally controllable retention circuit.
International Solid-State Circuits, 2013.

Richard M. Yoo, Anthony Romano, and Christos Kozyrakis.
Phoenix rebirth: Scalable MapReduce on a large-scale
shared-memory system. International Symposium on
Workload Characterization, 2009.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In International Symposium
on Computer Architecture, 1995.

L. Dagum and R. Menon. OpenMP: An industry-standard API
for shared-memory programming. IEEE Computational
Science and Engineering, 1998.

D. H. Bailey et al. NAS parallel benchmarks. Technical report
RNR-94-007., NASA Ames Research Center, 1994.

Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder.
Simpoint 3.0: Faster and more flexible program analysis.
Journal of Instruction Level Parallelism, 2005.

Encounter RTL compiler.
http://www.cadence.com/products/1d/rtl_compiler/.

Free PDK 45nm open-access based PDK for the 45nm
technology node. http://www.eda.ncsu.edu/wiki/FreePDK.
ITRS. International Technology Roadmap for
Semiconductors.
http://www.itrs.net/links/2010itrs/home2010.htm.

‘Wei Zhao and Yu Cao. New generation of predictive
technology model for sub-45nm design exploration.
International Symposium on Quality Electronic Design, 2006.
John L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Computer Architecture News, 2006.

