
PARDIS: A Programmable Memory Controller for the DDRx Interfacing
Standards

Mahdi Nazm Bojnordi and Engin Ipek
University of Rochester

Rochester, NY 14627 USA
{bojnordi, ipek}@ece.rochester.edu

Abstract
Modern memory controllers employ sophisticated ad-

dress mapping, command scheduling, and power manage-
ment optimizations to alleviate the adverse effects of DRAM
timing and resource constraints on system performance. A
promising way of improving the versatility and efficiency of
these controllers is to make them programmable—a proven
technique that has seen wide use in other control tasks rang-
ing from DMA scheduling to NAND Flash and directory
control. Unfortunately, the stringent latency and through-
put requirements of modern DDRx devices have rendered
such programmability largely impractical, confining DDRx
controllers to fixed-function hardware.

This paper presents the instruction set architecture (ISA)
and hardware implementation of PARDIS, a programmable
memory controller that can meet the performance require-
ments of a high-speed DDRx interface. The proposed
controller is evaluated by mapping previously proposed
DRAM scheduling, address mapping, refresh scheduling,
and power management algorithms onto PARDIS. Simu-
lation results show that the average performance of PAR-
DIS comes within 8% of fixed-function hardware for each
of these techniques; moreover, by enabling application-
specific optimizations, PARDIS improves system perfor-
mance by 6-17% and reduces DRAM energy by 9-22% over
four existing memory controllers.

1 Introduction
The off-chip memory subsystem is a significant perfor-

mance, power, and quality-of-service (QoS) bottleneck in
modern computers, necessitating a high-performance mem-
ory controller that can overcome DRAM timing and re-
source constraints by orchestrating data movement between
the processor and main memory. Contemporary DDRx
memory controllers implement sophisticated address map-
ping, command scheduling, power management, and re-
fresh algorithms to maximize system throughput and mini-
mize DRAM energy, while ensuring that system-level QoS
targets and real-time deadlines are met. The conflicting re-

quirements imposed by this multi-objective optimization,
compounded by the diversity in both workload and mem-
ory system characteristics, make high-performance memory
controller design a significant challenge.

A promising way of improving the versatility and ef-
ficiency of a memory controller is to make the controller
programmable; indeed, programmability has proven useful
in the context of other complex control tasks from DMA
scheduling [1, 2] to NAND Flash [3] and directory [4, 5,
6, 7, 8, 9] control. In these and other architectural control
problems, programmability allows the controller to be cus-
tomized based on system requirements and performance ob-
jectives, makes it possible to perform in-field firmware up-
dates to the controller, and enables application-specific con-
trol policies. Unfortunately, extending such programmabil-
ity to a DRAM controller is complicated by the stringent la-
tency and throughput constraints of DDRx protocols, which
currently operate at data rates in excess of 10GB/s per chan-
nel. As a result, contemporary memory controllers are in-
variably confined to implementing DRAM control policies
in ASIC-like, fixed-function hardware blocks.

This paper presents PARDIS, a programmable memory
controller that provides sufficiently high performance to
make the firmware implementation of DDRx control poli-
cies practical. PARDIS divides the tasks associated with
high-performance DRAM control among a request proces-
sor, a transaction processor, and dedicated command logic.
The request and transaction processors each have a domain-
specific ISA for accelerating common request and mem-
ory transaction processing tasks, respectively. The timing
correctness of the derived schedule is enforced in hardware
through dedicated command logic, which inspects—and if
necessary, stalls—each DDRx command to DRAM to en-
sure that all DDRx timing constraints are met. This separa-
tion between performance optimization and timing correct-
ness allows the firmware to dedicate request and transaction
processor resources exclusively to optimizing performance
and QoS, without expending limited compute cycles on ver-
ifying the correctness of the derived schedule.

13978-1-4673-0476-4/12/$31.00(c)2012 IEEE

Synthesis results on a complete RTL implementation of
the PARDIS system indicate that the proposed controller oc-
cupies less than 1.8mm2 of area and consumes less than
152mW of peak power at 22nm. Four command schedul-
ing policies, an address mapping technique, a refresh
scheduling mechanism, and a recently proposed power
management algorithm are implemented in firmware and
mapped onto PARDIS for evaluation; when averaged over a
set of 13 scalable parallel applications, PARDIS achieves
performance and DRAM energy within 8% of fixed-
function hardware for each of these techniques. Further-
more, by enabling application-specific address-mapping op-
timizations, PARDIS improves performance by 6-17% and
DRAM energy by 9-22% over four existing memory con-
trollers.

2 Background and Motivation

Modern DRAM systems are organized into a hierarchy
of channels, ranks, banks, rows, and columns to exploit
locality and parallelism. Contemporary high-performance
microprocessors commonly integrate two to four indepen-
dent memory controllers, each with a dedicated DDRx
channel. Each channel consists of multiple ranks that can
be accessed in parallel, and each rank comprises multiple
banks organized as rows×columns, sharing common data
and address buses. A set of timing constraints dictate the
minimum delay between each pair of commands issued to
memory; maintaining high throughput and low latency ne-
cessitates a sophisticated memory controller that can cor-
rectly schedule requests around these timing constraints.

A DDRx memory controller receives a request stream
consisting of reads and writes from the cache subsystem,
and generates a corresponding DRAM command stream.
Every request requires accessing multiple columns of a row
within DRAM. A row needs to be loaded into a row buffer
by an activate command prior to a column access. Consec-
utive accesses to the same row, called row hits, enjoy the
lowest access latency, whereas a row miss necessitates issu-
ing a precharge command to precharge the bitlines within
the memory array, and then loading a new row to the row
buffer using an activate command.

3 Overview
Figure 1 shows an example computer system consisting

of a multicore processor with PARDIS, interfaced to off-
chip DRAM over a DDR3 channel. PARDIS receives read
and write requests from the last-level cache controller, and
generates DDR3 commands to orchestrate data movement
between the processor and main memory. Internally, PAR-
DIS comprises a request processor, a transaction processor,
and command logic—three tightly-coupled processing ele-
ments that work in tandem to translate each memory request
to a valid sequence of DDR3 commands.

3.1 Request Processor
Upon arrival at the memory controller, each request is

enqueued at a FIFO request queue that interfaces to the re-
quest processor. The job of the request processor is to de-
queue the next request at the head of the request queue, to
generate a set of DRAM coordinates—channel, rank, bank,
row, and column IDs—for the requested address, and to en-
queue a new DDRx transaction with the generated coordi-
nates in a transaction queue. Hence, the request proces-
sor represents the first level of translation—from requests
to memory transactions—in PARDIS, and is primarily re-
sponsible for DRAM address mapping.

3.2 Transaction Processor
The transaction processor operates on the DDRx trans-

actions that the request processor enqueues in the trans-
action queue. The primary job of the transaction proces-
sor is to track the resource needs and timing constraints
for each memory transaction, and to use this information
to emit a sequence of DDRx commands that achieves per-
formance, energy, and QoS goals. The transaction pro-
cessor’s ISA is different from the request processor’s, and
offers several important capabilities. A subset of the in-
structions, called transaction management instructions, al-
lows the firmware to categorize memory requests based
on the state of the memory subsystem (e.g., requests that
need a precharge), the request type (e.g., a write request),
and application-specific criteria (e.g., thread IDs) to derive
a high-performance, efficient command schedule. A sec-
ond subset of the instructions, called command manage-
ment instructions, allows the firmware to emit either the
next required command for a given transaction (e.g., an ac-
tivate command to a particular row), or a new command
for various DRAM management purposes (e.g., power-
management or refresh scheduling).

3.3 Command Logic
The purpose of the command logic is to inspect the gen-

erated command stream, to check—and if necessary, to
stall—the command at the head of the command queue to
ensure all DDRx timing constraints are met, and to syn-
chronize the issue of each command with the DDRx clock.
The command logic is not programmable through an ISA;
nevertheless, it provides configurable control registers spec-
ifying the value of each DDRx timing constraint, thereby
making it possible to interface PARDIS to different DDRx
systems. Since the command logic enforces all timing con-
straints and guarantees the timing correctness of the sched-
uled command stream, it becomes possible to separate tim-
ing correctness from performance optimization.

4 Instruction Set Architecture
Programming PARDIS involves writing code for the re-

quest and transaction processors, and configuring the con-
trol registers specifying DDRx timing constraints to the
command logic.

14

Command
Logic

Transaction
Processor
SRAM

Request
Processor
SRAM

Firmware

CommandsRequests

Data Buffer

data blocks
data blocks

DRAMPROCESSOR

L2
Cache

Request Queue Transaction Queue Command Queue

PARDIS

Figure 1. Illustrative example of PARDIS in a computer system.

4.1 Request Processing
The request processor is a 16-bit RISC architecture with

separate instruction and data memories (i.e., a Harvard ar-
chitecture). The primary goals of the request processor are
address mapping and translating each request to a DDRx
transaction; to achieve these goals, the request processor
provides specialized data types, storage structures, and in-
structions for address manipulation.

4.1.1 Data Types
Request processing algorithms are dominated by arithmetic
and logical operations on memory addresses. Two data
types, an unsigned integer and a request, suffice to represent
the information used in these algorithms (Figure 2). An un-
signed integer is 16 bits wide, and can be used by every in-
struction except jumps. A request is 64 bits wide, compris-
ing a 48-bit address and a 16-bit metadata field recording
information about the DRAM request: the type of memory
operation (read or write), the destination cache type (data or
instruction), whether the access is initiated by a load miss,
the owner thread’s ID, whether the request is a prefetch, and
other application specific priority flags.

Address Metadata Request

UInt Unsigned Integer

R/W D/I LM Thread ID Prefetch App. Defined Priority

Figure 2. Data types supported by the request processor.

4.1.2 Storage Model
Programmer-visible storage structures within the request
processor include the architectural registers, the data mem-
ory, and the request queue. The request processor provides
32 architectural registers (R0-R31); of these, one (R0) is
hardwired to zero, four (R1-R4) are dedicated to reading
a 64-bit request from the request queue, and four (R5-R8)
are used for temporarily storing a transaction until it is en-
queued at the transaction queue. The data memory has a
linear address space with 16-bit data words, indexed by a
16-bit address.

4.1.3 Instructions
As depicted in Figure 3, the request processor supports 14
32-bit instructions of four different types.
Arithmetic and Logical Instructions. Supported ALU op-
erations include addition, subtraction, logical shifts, and bit-
wise logical operations. All ALU instructions can use any
of the 32 architectural registers as an input operand.
Control Flow. The request processor supports both jumps
and branches. Possible branch conditions that can be

tested are equality and inequality between two registers, and
whether the transaction queue is empty. The target address
of a branch is a 16-bit immediate value, which is an absolute
address to the instruction memory.
Memory Access. Only loads and stores access the data
memory, and only the displacement addressing mode (16-
bit immediate + register) is supported for simplicity.
Queue Access. The firmware needs a mechanism for de-
queuing requests from the request queue and enqueuing
transactions at the transaction queue. To fulfill this need,
request processing instructions are equipped with two flags
called “R” and “T”. An instruction annotated with the R flag
dequeues the request at the head of the request queue, and
loads the request fields into registers R1-R4 prior to execu-
tion; likewise, after an instruction annotated with the T flag
executes, it enqueues a new transaction based on the con-
tents of registers R5-R8 at the transaction queue. Hence,
a typical sequence of instructions for processing a request
involves copying different fields of the 64-bit request into
general purpose registers with the R flag, operating on these
fields to compute channel, rank, bank, row, and column IDs,
and copying the resulting transaction fields from the regis-
ter file to the transaction queue with the T flag. A single in-
struction is allowed to be annotated with both R and T flags,
in which case it dequeues a request, operates on it, and en-
queues a transaction based on the contents of R5-R8. After
a request is dequeued from the request queue, its fields are
available for processing in the register file; therefore, all re-
quest processor instructions can operate on each of the four
fields of a request.

ADD, SUB, SLL, SRL, AND, OR, XOR, NOT
JMP, BEQ, BNEQ, BTQE
LOAD, STORE
any instruction annotated with -R or -T

ALU
Control Flow
Data Memory
Queue Access

Figure 3. Instructions supported by the request processor.

4.1.4 Example Firmware Code: Page Interleaving and
Permutation Based Address Mapping

As explained in Section 4.1.2, registers R1-R4 are used for
holding the address and metadata fields of the request once
the request is dequeued from the request queue, and reg-
isters R5-R8 are used for enqueuing the next transaction
at the transaction queue. The firmware can either directly
copy R1-R4 to R5-R8 to implement page interleaving [10],
or can operate on R1-R4 to implement more sophisticated
address mapping heuristics. Figure 4 shows an example
code snippet that implements page interleaving. In the fig-

15

ure, an infinite loop iteratively dequeues the next request,
copies the contents of the request registers to transaction
registers, and enqueues a new transaction at the transaction
queue. The first instruction of the loop is annotated with
the R flag, which forces it to block until the next request ar-
rives. Since one source operand of each ADD instruction in
the example is the hardwired zero register (R0), each ADD
instruction effectively copies one source request register to
a destination transaction register. The last ADD instruction
is annotated with the T flag to check for available space in
the transaction queue, and to enqueue a new transaction.

Page Interleaving Address Mapping
st: ADD-R R5,R1,R0
 ADD R6,R2,R0
 ADD R7,R3,R0
 ADD-T R8,R4,R0
 JMP st

Bank ID Row ID

Bank ID

Page ID Offset

Row ID Page ID Offset

R1 R2 R3

R5 R6 R7

Metadata

Metadata

R4

R8

Figure 4. Illustrative example of page interleaving on the
request processor. The destination register in each line of code
is the leftmost register.

As a second example of address mapping at the request
processor, an implementation of permutation based page in-
terleaving [11] is shown in Figure 5. In every iteration of
the address mapping loop, an AND instruction first filters
out unwanted bits of the row ID field using a bit mask. (The
mask is defined based on DRAM parameters, such as the
number of banks.) Then, a shift-right logical (SRL) instruc-
tion aligns the selected row ID bits with the least significant
bits of the bank ID. An XOR instruction generates the new
bank ID for the request, and stores the results in a trans-
action register. The remaining instructions copy source re-
quest registers to destination transaction registers, and en-
queue a transaction at the transaction queue.
Permutation Based Address Mapping
Initialization
 LD R10,R0(0) # load bit mask for bank ID
 LD R11,R0(1) # load shift amount for alignment
Main Loop
st: AND-R R9,R2,R10
 SRL R9,R9,R11
 XOR R5,R1,R9
 ADD R6,R2,R0
 ADD R7,R3,R0
 ADD-T R8,R4,R0
 JMP st

Bank ID Row ID

Bank ID

Page ID Offset

Row ID Page ID Offset

R1 R2 R3

R5 R6 R7

Metadata

Metadata

R4

R8

Figure 5. Illustrative example of permutation based address
mapping on the request processor. The destination register in
each line of code is the leftmost register.

UInt Unsigned Integer

 rank/bank row column f-key Transactionv-key

CommandtypeAddress

Hardware Managed
V B CAS ACT PRE RDY reserved Software Managed

Transaction v-key

R/W D/I LM Thread ID PF CL App. Defined Priority
Transaction f-key

V RD WR ACT PRE Power REF Sleep
Command Type

Figure 6. Data types supported by the transaction processor.

4.2 Transaction Processing
The transaction processor implements a 16-bit RISC ISA

with split instruction and data memories, and is in charge of
command scheduling and DRAM management. These tasks
require sophisticated instructions and necessitate a more
powerful ISA than that of the request processor.

4.2.1 Data Types
In addition to a basic 16-bit unsigned integer, the transaction
processor defines two new data types called a transaction
and a command. A transaction consists of three fields: an
address, a fixed key (f-key in Figure 6), and a variable key
(v-key in Figure 6). The address field is 48 bits wide and
is in DRAM-coordinate format, where the least significant
bits represent the byte offset, the next few bits represent the
page ID, and so on (Figure 5). The fixed and variable key
fields are used for performing associative lookups on the
outstanding transactions in the transaction queue. For ex-
ample, it is possible to search the fixed key fields of all out-
standing transactions to identify those transactions that are
due to cache-missing loads. A fixed key is written by the
request processor, and is read-only and searchable within
the transaction processor. The variable key reflects the state
of a transaction based on timing constraints, resource avail-
ability, and the state of the DRAM system. The variable key
makes it possible, for example, to search for all transactions
whose next command is a precharge to a specific bank. The
variable key consists of two disjoint parts called the hard-
ware managed and software managed regions. The hard-
ware managed region comprises a valid bit (V), three flags
indicating the next valid DRAM command for the transac-
tion (i.e., a read/write, precharge, or activate), and a pro-
grammed ready bit (RDY). The hardware managed region
is automatically updated by hardware each cycle, whereas
the software managed region can only be modified by a ded-
icated instruction that overwrites its fields.

The request processor may enqueue new transactions
while the transaction processor is working on one iteration
of a scheduling loop. To prevent these new transactions
from interfering with the ongoing policy computation, the
transaction processor uses the busy flag (B) that marks the
transactions that are currently being worked on. Associa-
tive search instructions include this flag in their search key
to avoid interference from the request processor.

A command consists of two fields called address and
type. The command can be a DRAM data transfer com-
mand such as a read, write, precharge, or activate, a power
management command such as power up or power down, a
refresh command, or a special “sleep” command that is in-
terpreted by the command logic as a multi-cycle throttling
request for active power management.
4.2.2 Storage Model
The transaction processor provides the programmer with
register, data memory, transaction queue, and command

16

queue storage abstractions. The processor has 64 general-
purpose registers (R0-R63), with R0 hardwired to zero. In
addition, the processor provides 64 special-purpose regis-
ters (S0-S63) bundled as an array of counters for imple-
menting timer-based interrupts and statistics counters for
decision making. Both the instruction and data memories
are accessed by 16-bit addresses, which results in address
space sizes of 64KB each. The transaction processor ac-
cesses the outstanding transactions in the transaction queue
via associative search instructions, and generates a com-
mand sequence to be enqueued at the command queue.
4.2.3 Instructions
The transaction processor provides 30 instructions compris-
ing ALU, control flow, memory access, interrupt process-
ing, and queue access operations (Figure 4.2.3).

ADD, SUB, MIN, MAX, SLL, SRL, AND, OR, XOR, NOT

JMP, JR, RETI, BLT, BLSG, BMSK, BEQ, BNEQ, BTQE,
BCQE
LOAD, STORE

LTQ, CTQ, UTQ, SRT, LCQ, ICQ,
any instruction annotated with -C

ALU

Control Flow

Data Memory

Queue Access

MFSR, SICInterrupt

Figure 7. Instructions supported by the transaction processor.

Arithmetic and Logical Instructions. The ISA supports
12 ALU instructions, including ADD, SUB, MIN, MAX,
shifts, and bitwise logical operations.
Control Flow. Ten control flow instructions are supported
to detect various memory system states and events. In addi-
tion to conventional jumps and branches, the ISA provides
“branch if the transaction queue is empty” (BTQE), “branch
if the command queue is empty” (BCQE), and “return from
an interrupt service routine” (RETI) instructions.
Memory Access. Only loads and stores are permitted to
access the data memory, and the only supported addressing
mode is displacement (16-bit immediate + register).
Interrupt Programming. The transaction processor pro-
vides 64 programmable counters which are used for cap-
turing processor and queue states (e.g., the number of com-
mands issued to the command queue). Every counter counts
up and fires an interrupt when a pre-programmed threshold
is reached. A programmable interrupt counter is written by
a “set interrupt counter” (SIC) instruction, and is read by a
“move from special register” (MFSR) instruction. SIC ac-
cepts two register specifiers and an immediate value to de-
termine the counter ID. One of the two register operands is
the address of the interrupt service routine for handling the
interrupt, and the other register is used for specifying the top
counter value after which the counter interrupt must fire. A
counter is read by the MFSR instruction, which moves the
value of the specified counter to a general purpose register.
Queue Access. The transaction processor allows the pro-
grammer to search for a given transaction by matching
against fixed and variable keys among all valid transactions

in the transaction queue; in the case of multiple matches,
priority is given to the oldest matching transaction. Prior
to a search, the search key is stored in an even numbered
register, and the following odd numbered register is used
to store a bit mask that determines which bits from the key
should contribute to the search. A search operation requires
two register operands specifying the fixed and variable keys,
and is typically followed by one of three actions:

1. Load Transaction. Loading a transaction involves ex-
ecuting a “load transaction queue” (LTQ) instruction,
which writes the next command for the selected trans-
action (Figure 6) to a specified destination register, and
the address field to a set of dedicated address registers.
If the search operation preceding LTQ results in a mis-
match, LTQ sets the valid bit (Figure 6) of the com-
mand field to zero; future instructions check this bit to
determine if the search has succeeded.

2. Update Transaction. The transaction processor al-
lows the programmer to update a transaction using the
“update transaction queue” (UTQ) instruction. The
lower eight bits of the immediate field of UTQ are writ-
ten into the software managed region of the variable
key. This allows firmware to classify matches based on
decision making requirements; for example, the batch-
scheduler algorithm in Par-BS [12] can mark a new
batch of transactions using UTQ.

3. Count the Number of Matches. Using a “count
transaction queue” (CTQ) instruction, the programmer
can count the number of transactions that match the
preceding search, and can store the result in a spec-
ified destination register. This capability allows the
firmware to make decisions according to the demand
for different DRAM resources; for example, a rank
with no pending requests can switch to a low power
state, or a heavily contended bank can be prioritized.

Eventually, a DDRx command sequence is created for
each transaction in the transaction processor and enqueued
in the command queue. The transaction processor allows
the programmer to issue a legal command to the command
queue by placing the command type and the address in a set
of command registers, and then executing an “issue com-
mand queue” (ICQ) instruction. An alternative to using ICQ
is to use a command flag that can be added to any instruc-
tion (-C). In addition to precharge, activate, read, and write
commands, the firmware can also issue a “sleep” command
to throttle the DRAM system for active power manage-
ment. The sleep command specifies the number of cycles
for which the command logic should stall once the sleep
command reaches the head of the command queue. Other
DRAM maintenance commands allow changing DRAM
power states, and issuing a refresh to DRAM.

By relying on dedicated command logic to stall each
command until it is free of all timing constraints, PAR-
DIS allows the programmer to write firmware code for the

17

DDRx DRAM system without worrying about timing con-
straints or synchronization with the DRAM clock. How-
ever, knowing the time at which different commands will
become ready to issue is still critical to deriving a high-
performance, efficient command schedule. To allow the
firmware to deliver better performance by inspecting when
a command will become ready, a ready bit is added to each
transaction; by default, the ready bit indicates that the com-
mand will be ready in the next clock cycle; however, the
programmer can change this to a larger number of cycles
using a “set ready threshold” (SRT) instruction.

4.2.4 Example Firmware Code: FCFS and FR-FCFS
Scheduling

As a simple example of transaction scheduling, the
firmware can emit the next valid DRAM command of the
oldest transaction, and can process all requests in the same
order that they arrive at the request processor. The trans-
action processing code of this first-come first-serve (FCFS)
algorithm is shown in Figure 8. The code snippet shows
an infinite loop with three instructions. A BTQE instruc-
tion keeps checking the empty flag of the transaction queue
until it reads a zero. The second instruction is a load from
transaction queue (LTQ), which is annotated with the C flag.
Since the key mask register (R1) that specifies which bits
of the variable and fixed keys should be searched (Section
4.3.3) is initialized to zero, LTQ simply searches for a valid
transaction in the transaction queue. Because of the annota-
tion with the C flag, the LTQ instruction creates a command
in the destination register (R9) and in the command address
registers. Then, based on the valid bit of the command (now
in R9), the LTQ instruction decides whether to enqueue the
command in the command queue.

FCFS Scheduling Algorithm
Initialization
 XOR R1,R1,R1 # reset the key mask
Main loop
st: BTQE st # A: wait for trans.
 LTQ-C R9,R0,R0 # B: issue oldest command
 JMP st # goto next transaction

A

B

empty

Figure 8. Example transaction processing code for FCFS
scheduling algorithm. The leftmost register in each line of code
is the destination register.

A second example code snippet for a higher-
performance, first-ready first-come first-serve (FR-FCFS)
[13] policy is shown in Figure 9. FR-FCFS considers
DRAM resource availability and the state of each transac-
tion to reduce the overall latency of a DRAM access. The
code uses an infinite loop to receive the next transaction
and to generate the corresponding commands. In the body
of the loop, a transaction is prioritized based on the type of
the next DRAM command it requires. A sequence of LTQ
instructions are used to find matches for a specific variable
key. The first LTQ instruction uses a pair of key and mask
registers (R10, R11) holding a bit pattern that represents

all transactions with a ready read or write command.
(Recall from Section 4.2.3 that the register holding the
bit mask is implicit, since the bit mask always resides
in the next odd register following a key.) Therefore, this
instruction searches for the oldest ready DRAM column
access command, and issues the command to the command
queue. The following instruction checks the valid bit
of the command placed in R1, and starts scheduling the
next command if a valid column access was found. If
no ready read or write command was available, the next
two instructions search for a valid activate command
and issue it if found; otherwise, the code searches for a
ready precharge command. Ready DRAM commands are
prioritized over commands that are not ready by using
the bit masks, while the order in which instructions are
executed enforces a descending priority from column reads
and writes to activate and precharge commands.

FR-FCFS Scheduling Algorithm
Initialization
 LD R10,R0(0) # key for ready CAS
 LD R11,R0(1) # mask for ready CAS
 LD R12,R0(2) # key for ready ACT
 LD R13,R0(3) # mask for ready ACT
 LD R14,R0(4) # key for ready PRE
 LD R15,R0(5) # mask for ready PRE
Main loop
st: BTQE st # A: idle
 LTQ-C R1,R0,R10 # B: ready CAS
 BMSK R1,valid, st # restart
 LTQ-C R1,R0,R12 # C: ready ACT
 BMSK R1,valid, st # restart
 LTQ-C R1,R0,R14 # D: ready PRE
 JMP st # restart

A
B

empty

C
D

Figure 9. Example transaction processing code for the FR-
FCFS scheduling algorithm. The leftmost register in each line
of code is the destination register.

5 Implementation
This paper explores a scalar pipelined implementation of

PARDIS as depicted in Figure 10. The proposed implemen-
tation follows a six-step procedure for processing an incom-
ing DRAM request, ultimately generating the correspond-
ing DRAM command stream. A unique request ID (URID)
is assigned to a new DRAM request before it is enqueued
at the FIFO request queue (1); the URID accompanies the
request throughout the pipeline, and is used to associate the
request with commands and DRAM data blocks. After a re-
quest is processed and its DRAM coordinates are assigned,
a new transaction for the request is enqueued at the trans-
action queue (2). At the time the transaction is enqueued,
the fixed key of the transaction is initialized to the request
type, while the variable key is initialized based on the cur-
rent state of the DRAM subsystem. Although transactions
enter the transaction queue in FIFO order, a queued transac-
tion is typically prioritized based on fixed and variable keys
(3), after which the processor issues the next command of
the transaction to the command queue (4). Commands that
are available in the command queue are processed by the

18

command logic in FIFO order (5). A DRAM command is
only dequeued when it is ready to appear on the DDRx com-
mand bus (6), and is issued to the DRAM subsystem at the
next rising edge of the DRAM clock.

DDRx Bus

Register File

Instruction
Memory

ALU

Data Memory

Request Processor
from processor

Request
Queue

IF

ID

EX

MEM

WB

1

2

GP RegFile

Instruction
Memory

Data Memory

Transaction Processor

IF

ID

EX

MEM

WB

SP Regs

Brn Pred

3

4

ALU

Transaction
Queue

Command
Queue

Command Logic

5

6

State Counters

Timing Table

Figure 10. Illustrative example of the proposed PARDIS
implementation.

5.1 Request Processor
The request processor implements a five-stage pipeline

with a read interface to the request queue and a write in-
terface to the transaction queue. In the first stage of the
pipeline, an instruction is fetched from the instruction mem-
ory. All branches are predicted taken, and on a branch mis-
prediction, the over-fetched wrong-path instruction is nulli-
fied. In the second stage, the fetched instruction is decoded
to extract control signals, operands are read from the regis-
ter file, and the next request is dequeued from the request
queue if the instruction is annotated with an R flag. If a re-
quest must be dequeued but the request queue is empty, the
request processor stalls the decode and fetch stages until
a new request arrives at the request queue. (Instructions in
later pipeline stages continue uninterrupted.) Request regis-
ters (R1-R4) can only be written from the request queue side
(on a dequeue), and are read-only to the request processor.
In the third pipeline stage, a simple 16-bit ALU executes the
desired ALU operation, or computes the effective address if
the instruction is a load or a store. Loads and stores access
the data memory in the fourth stage. In the final stage of
the pipeline, the result of every instruction is written back
to the register file, and if the T flag of the instruction is set,
a new transaction is enqueued at the transaction queue.

5.2 Transaction Processor
The transaction processor is a 16-bit, five-stage pipelined

processor. In the first stage of the pipeline, the proces-
sor fetches the next instruction from a 64KB instruction
memory. In the implementation, branch and jump instruc-
tions are divided into two categories: fast and slow. Fast

branches include jump and branch on queue status instruc-
tions (BTQE and BCQE), for which the next instruction can
be determined in the fetch stage; as such, these branches
are not predicted and incur no performance losses due to
branch mispredictions. Slow branches depend on register
contents and are predicted by an 8K-entry g-share branch
predictor. Critical branches in the transaction processor are
usually coded using the fast branch instructions (e.g., infi-
nite scheduling loops, or queue state checking).

In the second pipeline stage, the instruction is decoded,
general- and special-purpose registers are read, and special-
purpose interrupt registers are set. Special purpose registers
are implemented using a 64-entry array of programmable
counters. In the proposed implementation of PARDIS,
32 of these programmable counters (S0-S31) are used for
timer interrupts, and the remaining 32 programmable coun-
ters (S32-S63) are used for collecting statistics to aid in
decision-making (Figure 11).

For every timer, there are two registers holding the inter-
rupt service routine address and the maximum counter value
after which an interrupt must fire. Every time the counter
resets, an interrupt is fired and latched in an interrupt flop.
There is a descending priority from S0 to S63 among all
interrupt timers. To prevent nested interrupts, a busy flag
masks all other interrupts until the current interrupt finishes
with a RETI instruction, which resets the busy flag and the
corresponding interrupt flop.

After decode, a 16-bit ALU performs arithmetic and
logic operations; in parallel, the transaction queue is ac-
cessed. Figure 12 shows the proposed architecture of the
transaction queue comprising five components: 1) five 64-
entry content-addressable memories (CAMs), one each for
the rank, bank, row, column, and unique request IDs, 2) a
64-entry CAM storing variable keys, 3) a 64-bit population
counter, 4) a 64-entry CAM holding fixed keys, and 5) a
64×86 bit RAM holding a copy of the fixed data for the
transaction (i.e., the address, the fixed key, and the URID).
The transaction queue is accessible in four ways:

1. Adding a New Transaction. If the transaction queue
is not full, a new transaction is written to the transac-
tion queue by updating the content of the address and
URID CAMs, variable keys, fixed keys, and the trans-
action data. Even though transactions are allowed to
leave the transaction queue out of order, the transac-
tion queue employs a circular enqueuing technique that
maintains an oldest-first order among occupied entries.

2. Searching for a Transaction. For all instructions that
need to search the transaction queue, the fixed and vari-
able key CAMs are accessed with the corresponding
search keys. Every key is accompanied by a mask in-
dicating which subset of the bits within the key should
contribute to the search (other bit positions are ignored
by hardware). The fixed and variable key CAMs pro-

19

counter

limitISR Addr.

mask

clear

reset S0 S1 S31

Timer Counters

S32 S33 S63

Stat Counters

Right Shiftershamt

 Command Type

≠0 =

enable counterISR Addr.

mask

reset

enable
index

to Fetch Stage
Figure 11. Interrupt counters in the proposed PARDIS implementation.

M
ul
tic
yc
le

Po
pu
la
tio
n

Co
un
te
r

Automatic Updates

Fixed
Key
CAM

New Transaction

Manual Updates

Variable
Key
Logic

Address
&

URID
CAMs

Tr
an
sa
ct
io
n

RA
M

Search Keys
to Trans.
Processor

ptr

Figure 12. The proposed architecture
of the transaction queue.

vide match results to the transaction RAM (for re-
trieving the DRAM address to be accessed by the se-
lected transaction) and to the population count logic
(for counting the number of matches).

3. Updating the Variable Keys. The variable key logic
receives updates to the variable key from the trans-
action processor and command logic. Updates to the
software-managed region of the variable key are gener-
ated by a UTQ instruction, whereas the hardware man-
aged region is automatically updated after every state
change.

4. Reading Search Results. After a search, the number
of matching transactions can be obtained from a popu-
lation counter, and the DRAM address of the highest-
priority matching transaction can be obtained from a
transaction RAM.

Command queue and data memory accesses occur in the
fourth stage of the pipeline, and the result of the instruction
is written back to the register file in the fifth stage.

5.3 Command Logic
The command logic (Figure 13) is implemented using

masking and timing tables initialized at boot time based on
DDRx parameters, plus a dedicated down-counter for each
DRAM timing constraint imposed by the DDRx standard.
Every DRAM cycle, the command at the head of the com-
mand queue is inspected, and a bit mask is retrieved from
the masking table to mask out timing constraints that are ir-
relevant to the command under consideration (e.g., tCL in
the case of a precharge). The remaining unmasked timers
are used to generate a ready signal indicating whether the
command is ready to be issued to the DRAM subsystem at
the next rising edge of the DRAM clock.

threshold

to
 T

ra
ns

ac
ti

on

Q
ue

ue

DDRx Bus

≤
≤
≤

Re
ad

y
Si

gn
al

Ge

ne
ra

to
r sleep counter counter

≠0 ≠0 ≠0

tXP tWR

mask table
Command Queue

Figure 13. Illustrative example of the proposed command
logic for PARDIS.

6 Experimental Setup
We evaluate the performance potential of PARDIS by

comparing fixed-function hardware and PARDIS-based
firmware implementations of FCFS [13], FR-FCFS [13],
Par-BS [12], and TCMS [14] scheduling algorithms. We
also implement in firmware a recent DRAM power man-
agement algorithm proposed by Hur and Lin [15], and com-
pare both the performance and the energy of this imple-
mentation to the fixed-function hardware implementation
of the same algorithm. We evaluate DRAM refresh man-
agement on PARDIS by comparing the fixed-function hard-
ware implementation of the Elastic Refresh technique [16]
to its firmware implementation. Finally, we evaluate the
performance potential of application-specific optimizations
enabled by PARDIS by implementing custom address map-
ping mechanisms. We evaluate DRAM energy and sys-
tem performance by simulating 13 memory-intensive par-
allel applications, running on a heavily modified version of
the SESC simulator [17]. We measure the area, frequency,
and power dissipation of PARDIS by implementing the pro-
posed system in Verilog HDL, and synthesizing the pro-
posed hardware.

Core 8 4-issue cores, 2.0 GHz
Functional units Int/FP/Ld/St/Br units 2/2/2/2/2, Int/FP Mult 1/1

IQ, LSQ, ROB size IssueQ 32, LoadQ/StoreQ 24/24, ROB 96
Physical registers Int/FP 96/96
Branch predictor Hybrid, local/global/meta 2K/2K/8K, 512-entry

direct-mapped BTB, 32-entry RAS
IL1 cache (per core) 32KB, direct-mapped, 32B block, hit/miss delay 2/2
DL1 cache (per core) 32KB, 4-way, LRU, 32B block,

hit/miss delay 3/3, MESI protocol
L2 cache (shared) 4MB, 8-way, LRU, 64B block, hit/miss delay 24/24

PARDIS request/transaction/command queue size: 64/64/64
8Gb DDR3-1066 chips, 2 Channels, 4 Ranks/Channel,

8 Banks/Rank, tRCD: 7, tCL: 7, tWL: 6, tCCD: 4,
DRAM Subsystem [19] tWTR: 4, tWR: 8, tRTP: 4, tRP: 7, tRRD: 4,

tRAS: 20, tRC: 27, tBURST: 4, tFAW: 20,
IDD0: 1314, IDD1: 1584, IDD2P: 288,

IDD2N: 1620, IDD3P: 1080, IDD3N: 1800,
IDD4R: 2304, IDD4W: 2304, IDD5B: 3297,

IDD6: 216

Table 1. Simulation parameters.

6.1 Architecture
We modify the SESC simulator [17] to model an eight-

core system with a 4MB L2 cache and two on-chip memory
controllers. Table 1 shows the simulation parameters. In the
simulated configuration, memory channels are fully popu-
lated with DIMMs (typical of server systems [15]), which
restricts the maximum channel data rate to 800MT/s for

20

DDR3-1066 [18, 19, 20]. This results in a core-to-DRAM
clock ratio of five. Energy results for the DRAM subsys-
tem are generated based on DDR3-1066 product data from
Micron[19]. Evaluated baseline controllers have the same
queue sizes as PARDIS (64 entries each); they observe
pending requests at the beginning of a DRAM clock cycle,
and make scheduling decisions by the end of the same cy-
cle. (In PARDIS, this is not always the case since policies
are implemented in firmware.)
6.2 Applications

Evaluated parallel workloads represent a mix of 13 data-
intensive applications from Phoenix [21], SPLASH-2 [22],
SPEC OpenMP [23], NAS [24], and Nu-MineBench [25]
suites. Table 2 summarizes the evaluated benchmarks and
their input sets. All applications are simulated to comple-
tion.

Benchmarks Suite Input
Histogram Phoenix 34,843,392 pixels (104MB)

String-Match Phoenix 50MB non-encrypted file
Word-Count Phoenix 10MB text file

ScalParC NU-MineBench 125K pts., 32 attributes
MG NAS OpenMP Class A
CG NAS OpenMP Class A

Swim-Omp SPEC OpenMP MinneSpec-Large
Equake-Omp SPEC OpenMP MinneSpec-Large

Art-Omp SPEC OpenMP MinneSpec-Large
Ocean SPLASH-2 514×514 ocean
FFT SPLASH-2 1M points

Radix SPLASH-2 2M integers

Table 2. Applications and data sets.

6.3 Synthesis
We evaluate the area and power overheads of the pro-

posed architecture by implementing it in Verilog HDL
and synthesizing the design using Cadence Encounter RTL
Compiler [28] with FreePDK [29] at 45nm. The results are
then scaled to 22nm (relevant parameters are shown in Ta-
ble 3). Instruction and data memories are evaluated using
CACTI 6.0 [30], while register files and CAMs are mod-
eled through SPICE simulations with the FabMem toolset
from FabScalar [31].

Technology Voltage FO4 Delay
45nm 1.1 V 20.25ps
22nm 0.83 V 11.75ps

Table 3. Technology parameters [26, 27].

7 Evaluation
We first present synthesis results on the area, power,

and delay contributions of various hardware components
in PARDIS. Next, we compare fixed-function hardware
and PARDIS-based firmware implementations of existing
scheduling policies, address mapping techniques, power
management algorithms, and refresh scheduling mecha-
nisms. We then evaluate the impact of a set of application-
specific address mapping heuristics enabled by PARDIS.
7.1 Area, Power, and Delay: Where Are

the Bottlenecks?
Synthesis results on the area, power, and delay con-

tributions of different hardware components are shown in

Figure 14. A fully synthesizable implementation of PAR-
DIS operates at over 2GHz, occupies 1.8mm2 of die area,
and dissipates 152mW of peak power; higher frequencies,
lower power dissipation, or a smaller area footprint can be
attained through custom—rather than fully synthesized—
circuit design. Most of the area is occupied by the request
and transaction processors because of four 64KB instruc-
tion and data SRAMs; however, the transaction queue—
which implements associative lookups using CAMs—is the
most power-hungry component (29%). Other major con-
sumers of peak power are the transaction processor (29%)
and the request processor (28%).

Request	
 Processor

Transac/on	
 Processor

Data	
 Queue

Command	
 Logic

Transac/on	
 Queue

Request	
 Queue Command	
 Queue

Request
Processor

Transac.on
Processor

410
Command

Logic

420
430
440
450
460
470
480
490
500

Cri$cal	
 Path	
 Delay	
 (ps)

Peak	
 Power
(152	
 mW)

Area
(1.8	
 mm²)

100%

80%

60%

40%

20%

0%

Area	
 and	
 Power	
 Breakdown

Figure 14. Delay, area, and peak power characteristics of
the synthesized PARDIS implementation.

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$Sp

ee
du

p$
ov
er
$H
ar
dw

ir
ed

$
Im

pl
em

en
ta
E
on

$

FCFS# FR-FCFS# PARBS# TCMS#

Figure 15. Performance of PARDIS-based and hardwired
implementations for FCFS, FR-FCFS, PARBS, and TCMS
scheduling algorithms.

7.2 Scheduling Policies
Figure 15 compares PARDIS-based firmware implemen-

tations of FCFS [13], FR-FCFS [13], Par-BS [12], and
TCMS [14] scheduling algorithms to their fixed-function
hardware implementations. PARDIS achieves virtually the
same performance as fixed-function hardware on FCFS and
FR-FCFS schedulers across all applications. For some
benchmarks (e.g., ART and OCEAN with FR-FCFS), the
PARDIS version of a scheduling algorithm outperforms the
fixed-function hardware implementation of the same algo-
rithm by a small margin. This improvement is an artifact of
the higher latency incurred in decision making when using
PARDIS, which generally results in greater queue occupan-
cies. As a result of having more requests to choose from, the
scheduling algorithm is able to exploit bank parallelism and
row buffer locality more aggressively under the PARDIS

21

implementation. However, for Par-BS and TCMS—two
compute-intensive scheduling algorithms—PARDIS suffers
from higher processing latency, and hurts performance by
8% and 5%, respectively.

7.3 Address Mapping
To evaluate the performance of different DRAM address

mapping techniques on PARDIS, the permutation-based in-
terleaving [11] technique was mapped onto PARDIS and
compared to its fixed-function hardware implementation
(Figure 16). The average performance of the two imple-
mentations differ by less than 1%; interestingly, PARDIS
outperforms fixed-function hardware by a small margin on
some applications. As explained in Section 7.2, PARDIS in-
curs a higher transaction processing latency, which results
in a higher transaction queue occupancy. In a scheduling
algorithm that searches for specific commands (e.g., FR-
FCFS, which searches for row hits), increasing the number
of candidate commands sometimes improves performance
(SWIM, FFT, and HISTOGRAM in Figure 16). Other ap-
plications, such as ART and OCEAN, do not benefit from
this phenomenon.

0.0#
0.2#
0.4#
0.6#
0.8#
1.0#
1.2#

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$

Sp
ee
du

p$
ov
er
$H
ar
dw

ir
ed

$
FR

AF
CF
S$
+$
Co

nv
en

D
on

al
$

Pa
ge
$In

te
rl
ea
vi
ng
$

FR+FCFS#+#Permuta6on#Based#(ASIC)#
FR+FCFS#+#Permuta6on#Based#(PARDIS)#

Figure 16. Performance of PARDIS-based and hardwired
implementations of permutation based address mapping.

0.68%
0.71%

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$D

RA
M
$E
ne

rg
y$

N
or
m
al
iz
ed

$to
$H
ar
dw

ir
ed

$
FR

EF
CF
S$

FR,FCFS%+%Hur%&%Lin%(ASIC)% FR,FCFS%+%Hur%&%Lin%(PARDIS)%

Figure 17. DRAM energy comparison between the
PARDIS-based and hardwired implementations of the queue
aware power management technique.

7.4 Power Management
DRAM power management with PARDIS was evaluated

by implementing Hur and Lin’s queue-aware power man-
agement technique [15] in firmware, and comparing the
results to a fixed-function hardware implementation (Fig-
ure 17); in both cases, the underlying command schedul-
ing algorithm is FR-FCFS. The hardwired implementa-
tion reduces average DRAM energy by 32% over conven-
tional FR-FCFS at the cost of 4% lower performance. The

0.96%
0.95%

0%
0.2%
0.4%
0.6%
0.8%
1%

1.2%

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$

Sp
ee
du

p$
ov
er
$H
ar
dw

ir
ed

$
FR

AF
CF
S$

FR-FCFS%+%Hur%&%Lin%(ASIC)% FR-FCFS%+%Hur%&%Lin%(PARDIS)%

Figure 18. Performance of PARDIS-based and hardwired
implementations for power management technique.

firmware implementation of queue-aware power manage-
ment with PARDIS shows similar results: 29% DRAM en-
ergy savings are obtained at the cost of a 5% performance
loss (Figures 17 and 18).

7.5 Refresh
In order to evaluate DRAM refresh management

on PARDIS, a conventional on-demand DDR3 refresh
method [19] is considered as the baseline to which fixed-
function hardware and PARDIS-based firmware imple-
mentations of the recently proposed Elastic Refresh algo-
rithm [16] are compared (Figure 19). The PARDIS-based
refresh mechanism takes advantage of interrupt program-
ming to manage the state of the ranks and to issue refresh
commands at the right time. The results indicate that the
average performance of firmware-based elastic refresh is
within 1% of fixed-function hardware.

0.0#
0.2#
0.4#
0.6#
0.8#
1.0#
1.2#

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$

Sp
ee
du

p$
ov
er
$H
ar
dw

ir
ed

$
FR

AF
CF
S$
+$
Ba

si
c$
Re

fr
es
h$

FR+FCFS#+#Elas3c#(ASIC)# FR+FCFS#+#Elas3c#(PARDIS)#

Figure 19. Performance of PARDIS-based and hardwired
implementations of the elastic refresh scheduling algorithm.

0.0#

0.3#

0.6#

0.9#

1.2#

1.5#

1.8#

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$

Sp
ee
du

p$
ov
er
$H
ar
dw

ir
ed

$
Im

pl
em

en
ta
E
on

$

FCFS# FR/FCFS# PARBS# TCMS#

Figure 20. Speedup over hardwired permutation-based in-
terleaving [11] using application-specific address mapping on
PARDIS.

7.6 Application Specific Optimizations
A hardwired address mapping scheme uses a fixed map-

ping function to distribute memory accesses among DRAM

22

banks; however, higher bank-level parallelism and row
buffer hit rates can be achieved by defining a custom map-
ping function for each application based on profiling anal-
ysis. We define a profiling dataset for each application and
evaluate the execution time when using different bit po-
sitions to index DRAM channels, ranks, and banks. (To
cull the design space, we require each DRAM coordi-
nate to comprise a set of adjacent bits.) After finding the
best scheme for each application, we run new simulations
based on the reference data sets to report the execution
time and DRAM energy consumption. 1 As shown in Fig-
ure 20, application-specific DRAM indexing improves per-
formance by 17%, 14%, 7%, and 6% over permutation-
based interleaving [11] for FCFS, FR-FCFS, Par-BS and
TCMS, respectively; corresponding DRAM energy savings
are 22%, 14%, 9%, and 9% (Figure 21).

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

AR
T$ CG

$

EQ
UA
KE
$
FF
T$

HI
ST
OG
RA
M
$

LIN
EA
R$

M
G$

OC
EA
N$

RA
DI
X$

SC
AL
PA
RC
$

ST
RI
NG
$

SW
IM
$

W
OR
D$

GM
EA
N$

D
RA

M
$E
ne

rg
y$
N
or
m
al
iz
ed

$
to
$H
ar
dw

ir
ed

$C
on

tr
ol
le
r$

FCFS# FR-FCFS# PARBS# TCMS#

Figure 21. DRAM energy savings over hardwired
permutation-based interleaving [11] using application-specific
address mapping on PARDIS.

8 Related Work
PARDIS builds upon existing work in high-performance

memory systems.

8.1 DDRx Controller Optimizations

Numerous DDRx controller optimizations for improving
performance, energy, and QoS have been published in the
literature [12, 13, 14, 15, 16, 32, 33, 34, 35, 36, 37, 41].
Unlike PARDIS, these proposals address specific workload
classes (multiprogrammed, parallel, or real-time); yet a
hardwired memory controller is neither able to meet the re-
quirements of a diverse set of applications optimally, nor
can it change its objective function for a new optimization
target. In addition, the emergence of new memory tech-
nologies (e.g., PCM) creates new opportunities for energy,
wearout, and performance optimization, which are difficult
to exploit within an existing hardwired controller. On the
other hand, PARDIS provides significant flexibility in sup-
porting a diverse set of capabilities through firmware-based
programmable control, ease of applying revisions to the im-
plemented memory controllers through firmware patches,
and configurability in interfacing to different media.

1We assume that the firmware is provided by the system and configured
according to the needs of each application by the OS. User-level program-
ming interfaces [5] are left for future work.

8.2 Programmable Cache and Directory
Controllers

Programmability is a well-known concept that has been
broadly applied to memory systems. FLASH [4] is a multi-
processor platform that introduces a general-purpose pro-
cessor, called MAGIC, for executing directory protocols.
Typhoon [5] is a programmable architecture that supports
Tempest—a message passing protocol. Alewife [8] allows
performance tuning through configuration of the cache co-
herence protocol. Smart Memories [9] is a framework
for designing cache coherent memory components con-
nected via an on-chip network. The focus of these propos-
als is on caches and directories, not on managing internal
DRAM resources. In contrast, PARDIS proposes a fully
programmable framework that provides application-specific
control of the DRAM subsystem.

8.3 Intelligent DRAM Controllers
Intelligent memory controllers have been proposed to

provide a degree of configurability to the memory system.
Impulse [6] is a memory controller that provides config-
urable access to memory blocks via physical address remap-
ping to accelerate special functions (e.g., matrix trans-
pose). Other proposals introduce programmability into con-
trollers for on-chip SRAMs and DMA engines [1, 2], or
allow choosing among pre-defined QoS-aware scheduling
algorithms for a DDRx memory controller [38]. Recently
proposed RL-based memory controllers [39, 40] introduce
the new concept of self-optimization to DRAM command
scheduling, exploiting reinforcement learning techniques.
An RL-based memory controller successfully implements
a hardwired but adaptive algorithm for DDR2 memory con-
trollers. To the best of our knowledge, PARDIS is the first
fully programmable DRAM memory controller that allows
for managing the request and command streams in software.

9 Conclusions
We have presented PARDIS, a programmable memory

controller that can meet the performance requirements of a
high-speed DDRx interface. We have seen that it is possible
to achieve performance within 8% of a hardwired memory
controller when contemporary address mapping, command
scheduling, refresh management, and DRAM power man-
agement techniques are mapped onto PARDIS. We have
also observed 6-17% performance improvements and 9-
22% DRAM energy savings by using application-specific
address mapping heuristics enabled by PARDIS. We con-
clude that programmable DDRx controllers hold the poten-
tial to significantly improve the performance and energy-
efficiency of future computer systems.

10 Acknowledgments
The authors would like to thank Arun Jagatheesan and

anonymous reviewers for useful feedback. This work was
supported in part by a Samsung contract.

23

References
[1] J. Martin, C. Bernard, F. Clermidy, and Y. Durand. A micro-

programmable memory controller for high-performance dataflow
applications. In Proc. European Solid-State Circuits Conference,
2009.

[2] G. Kornaros, I. Papaefstathiou, A. Nikologiannis, and N. Zervos. A
fully programmable memory management system optimizing queue
handling at multi gigabit rates. In Proc. Design Automation Confer-
ence, 2003.

[3] Micron Technology, Inc., TN-29-14: Increasing NAND Flash
Performance Functionality, 2009. http://www.micron.com/
get-document/?documentId=140.

[4] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-
sor. In Proc. International Symposium on Computer Architecture,
1994.

[5] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and typhoon:
user-level shared memory. In Proc. International Symposium on
Computer Architecture, 1994.

[6] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a smarter memory controller. In
In Proc. International Symposium on High-Performance Computer
Architecture, 1999.

[7] M. Browne, G. Aybay, A. Nowatzyk, and M. Dubois. Design veri-
fication of the S3.mp cache coherent shared-memory system. IEEE
Transactions on Computers, 1998.

[8] A. Agarwal, R. Bianchini, D. Chaiken, D. Kranz, J. Kubiatowicz,
B.H. Lim, K. Mackenzie, and D. Yeung. The MIT alewife machine:
architecture and performance. In Proc. International Symposium on
Computer Architecture, 1995.

[9] A. Firoozshahian, A. Solomatnikov, O. Shacham, Z. Asgar,
S. Richardson, C. Kozyrakis, and M. Horowitz. A memory system
design framework: creating smart memories. In Proc. International
Symposium on Computer Architecture, 2009.

[10] B.L. Jacob, S.W. Ng, D.T. Wang, and D.T. Wang. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[11] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page in-
terleaving scheme to reduce row-buffer conflicts and exploit data
locality. In Proc. International Symposium on Microarchitecture,
2000.

[12] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM sys-
tems. In Proc. International Symposium on Computer Architecture,
2008.

[13] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens
Memory access scheduling. In Proc. International Aymposium on
Computer Architecture, 2000.

[14] Y. Kim, M. Papamichael, O. Mutlu, and M.H. Balter. Thread clus-
ter memory scheduling: Exploiting differences in memory access
behavior. In Proc. International Symposium on Microarchitecture,
2010.

[15] I. Hur and C. Lin. A comprehensive approach to DRAM
power management. In Proc. International Symposium on High-
Performance Computer Architecture, 2008.

[16] J. Stuecheli, D. Kaseridis, H.C. Hunter, and L.K. John. Elastic re-
fresh: Techniques to mitigate refresh penalties in high density mem-
ory. In Proc. International Symposium on Microarchitecture, 2010.

[17] J. Renau et al. SESC simulator, Jan. 2005. http://sesc.
sourceforge.net.

[18] Micron Technology, Inc., TN-41-08: Design Guide for
Two DDR3-1066 UDIMM Systems Introduction, 2009.
http://www.micron.com//document_download/
?documentId=4297.

[19] Micron Technology, Inc., 8Gb DDR3 SDRAM, 2009. http://
www.micron.com//get-document/?documentId=416.

[20] Hewlett-Packard Development Company, L.P., DDR3 mem-
ory technology, 2010. http://h20195.www2.hp.com/v2/
GetPDF.aspx/c01750914.pdf.

[21] R.M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: Scal-
able MapReduce on a large-scale shared-memory system. In Proc.
International Symposium on Workload Characterization, 2009.

[22] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consid-
erations. In Proc. Interntional Symposium on Computer Architec-
ture, 1995.

[23] L. Dagum and R. Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Computational Science and
Engineering, 1998.

[24] D.H. Bailey et al. NAS parallel benchmarks. Technical report,
NASA Ames Research Center, 1994. Tech. Rep. RNR-94-007.

[25] R. Narayanan et al. Minebench: A benchmark suite for data mining
workloads. In International Symposium on Workload Characteriza-
tion, 2006.

[26] ITRS. International Technology Roadmap for Semiconductors:
2010 Update. http://www.itrs.net/links/2010itrs/
home2010.htm.

[27] W. Zhao and Y. Cao. New generation of predictive technology
model for sub-45nm design exploration. In International Sympo-
sium on Quality Electronic Design, 2006.

[28] Encounter RTL compiler. http://www.cadence.com/
products/ld/rtl_compiler/.

[29] Free PDK 45nm open-access based PDK for the 45nm technology
node. http://www.eda.ncsu.edu/wiki/FreePDK.

[30] S. Wilton and N. Jouppi. CACTI: An enhanced cache access and
cycle time model. IEEE Journal of Solid-State Circuits, 1996.

[31] N.K. Choudhary, S.V. Wadhavkar, T.A. Shah, H. Mayukh,
J. Gandhi, B.H. Dwiel, S. Navada, H.H. Najaf-abadi, and E. Roten-
berg. Fabscalar: composing synthesizable RTL designs of arbitrary
cores within a canonical superscalar template. In Proceeding of the
International Symposium on Computer Architecture, 2011.

[32] Y. Kim, D. Han, O. Mutlu, and M.H. Balter. Atlas: A scalable and
high-performance scheduling algorithm for multiple memory con-
trollers. In Proc. International Symposium on High-Performance
Computer Architecture, 2010.

[33] B. Diniz, D.O.G. Neto, W. Meira, and R. Bianchini. Limiting the
power consumption of main memory. In Proceeedings of Interna-
tional Symposium on Computer Architecure, 2007.

[34] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu.
Mini-rank: Adaptive DRAM architecture for improving memory
power efficiency. In Proc. International Symposium on Microarchi-
tecture, 2008.

[35] C. Isen and L. John. Eskimo: energy savings using semantic knowl-
edge of inconsequential memory occupancy for DRAM subsystem.
In Proc. International Symposium on Microarchitecture, 2009.

[36] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubra-
monian, and A. Davis. Micro-pages: increasing DRAM efficiency
with locality-aware data placement. In Proc. Architectural Support
for Programming Languages and Operating Systems, 2010.

[37] S. Liu, K. Pattabiraman, T. Moscibroda, and B.G. Zorn. Flikker:
saving DRAM refresh-power through critical data partitioning. In
Proc. Architectural Support for Programming Languages and Op-
erating Systems, 2011.

[38] K.-B. Lee, T.-C. Lin, and C.-W. Jen. An efficient quality-aware
memory controller for multimedia platform SOC. In IEEE Trans-
actions on Circuits and Systems for Video Technology, 2005.

[39] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing
memory controllers: a reinforcement learning approach. In Proc.
International Symposium on Computer Architecture, 2008.

[40] J. Mukundan and J.F. Martinez. Morse: multi-objective reconfig-
urable self-optimizing memory scheduler. In Proc. International
Symposium on High-Performance Compouter Architecture, 2012.

[41] J. Stuecheli, D. Kaseridis, D. Daly, H.C. Hunter, and L.K. John. The
virtual write queue: coordinating DRAM and last-level cache poli-
cies. In Proc. Interntional Symposium on Computer Architecture,
2010.

24

