
G-ARRAYS: GEOMETRIC ARRAYS FOR EFFICIENT POINT CLOUD PROCESSING

Hoda Roodaki, Masoud Dehyadegari

K. N. Toosi University of Technology
{hroodaki,dehyadegari}@kntu.ac.ir

Mahdi Nazm Bojnordi

School of Computing, University of Utah
bojnordi@cs.utah.edu

ABSTRACT

With the increasing demand for 3D modeling by the emerg-
ing immersive applications, the 3D point cloud has become
an essential representation format for processing 3D images
and video. Because of the inherent sparsity in 3D data and
the significant memory requirements for representing points,
point cloud processing is a challenging task. In this paper, we
propose a novel data structure for representing point clouds
with a reduced memory requirement and a faster lookup than
the state-of-the-art formats. The proposed format is examined
for temporal encoding in geometric point cloud compression.
Our simulation results show that the proposed temporal pre-
diction enhances the compression rate and quality by 13-33%
as compared to MPEG G-PCC. Moreover, the proposed data
structure provides 16-54× faster point lookup operations and
more than 1.4× reduction in memory consumption compared
to the octree structure used in the MPEG G-PCC.

Index Terms— Point cloud processing, spatial/temporal
coding, memory management.

1. INTRODUCTION

3D point clouds are a collection of individual 3D points
where, each point includes 3D coordinates along with several
attributes such as color and reflection [1] [2] [3]. Point clouds
are a crucial approach to represent 3D objects in autonomous
driving [4] [5] [6] [7], virtual and augmented realities [8],
medical imaging, indoor navigation [9], and real-time 3D
telepresence [10]. Due to the significant memory require-
ments of point clouds, compression techniques are becoming
inevitable. Efficient compression of point cloud data with
minimal negative impact on the quality of video is crucial
[11][1]. Without compression, a 3.6 Gbps bandwidth is nec-
essary to transfer 30 frames per second while each frame
comprises 1 million points [11]. Some efforts have been
made to compress point clouds for various communication
networks. MPEG has proposed Video-based (V-PCC) and
Geometry-based (G-PCC) approaches for point cloud com-
pression [11].
Advanced compression methods for point clouds are based
on an octree structure [12] [13] to remove the spatial and
temporal redundancy within a point cloud [14]. These meth-

ods try to remove the temporal redundancies of point cloud
streams by comparing the octree differences of consecutive
point cloud frames. For the temporal encoding of a frame
(a.k.a., predicted frame), instead of directly encoding the raw
pixel values, the encoder finds similar points to the points of
the predicted frame from a previously encoded frame (a.k.a.,
reference frame). The proposed method relies on estimat-
ing motion between blocks of the consecutive frames. In
this process, given a specific block A in the predicted frame
and its matching block B in the reference frame, a motion
vector (MV) is defined as a vector connecting the top-left
coordinates of A and B. Then, the extracted motion vector
and a residual block are encoded and sent to the decoder. The
residual block is defined as the difference between A and B.
The geometry of points in point clouds, unlike the computer-
generated or natural 2D videos, has limited spatio-temporal
locality [15]. Figure 1 shows two consecutive frames cap-
tured at different time instances for the 3D model of Soldier
[16]. Each frame has a different number of points. Moreover,
there is no explicit correspondence among the points of the
two frames. This makes extracting the temporal redundancy
between successive frames a challenging task.
To estimate motion among 3D blocks, we need to store the
points in a searchable data structure. The data structure may
be a sparse matrix because the point cloud doesn’t neces-
sarily include all possible points in the 3D space. Storing
the non-existing points would lead to polluting the memory.
Even in its sparse representation form, a typical point cloud
comprises millions of points, which imposes a significant
pressure on the memory capacity and bandwidth. The state-
of-the-art methods propose to use an octree structure for this
purpose [17]. To represent a 3D point cloud using the octree
structure, the 3D space is divided into eight octants. Each
octant can be further divided to smaller octants if it has more
than one point. The block division for forming an octree is
repeated based on a user-defined parameter, namely depth
[18]. The deeper the octree, the finer-grained accesses to the
points are enabled. The most common implementation of
the octree employs a tree structure with pointers to represent
hierarchical connections among the octants, i.e., each node
of the octree has eight pointers, one for each of its children,
and a reference to the associated data. The large number of
pointers used in the octree results in a significant memory



consumption and requires numerous memory indirections
for each point access that makes the point cloud processing
slow. As an efficient alternative to octrees, we propose a
novel fine-grained searchable storage format using decoupled
geometric arrays (G-arrays) that enable a faster lookup than
the state-of-the-art octrees. The use of G-arrays for tempo-
ral encoding in geometric point cloud compression can save
memory consumption by an average of 1.4×.

Fig. 1. (a) Two consecutive frames of the point cloud se-
quence, Soldier, captured at different time instances (b) the
Residual frame, and (c) the obtained motion vector.

2. RELATED WORK

The G-PCC reference encoder in [11] [19] encodes the data
directly in the 3D space using an octree to describe the lo-
cation of points for spatial prediction. Geometry encoding
includes coordinate transformation, voxelize, geometry anal-
ysis, and arithmetic coding. Kammerl et al. [20] remove the
temporal redundancies of input point cloud streams by com-
paring the octrees of consecutive frames. Mekuria et al. [10]
exploit the octree structure for spatial and temporal coding to
compress real-time 3D tele-immersive video. Thanou et al.
[15] present an approach for motion estimation and compen-
sation for geometry and color information to provide a com-
pression framework for 3D point clouds.

3. PROPOSED METHOD

One of the main difficulties in G-PCC coding is representing
the intermediate point cloud data for motion estimation. First,
we propose an efficient data representation for 3D point cloud
based on geometric arrays. Then, we examine the use of G-
arrays in a cluster-based temporal prediction mechanism.

3.1. Geometric Arrays

To process point cloud for motion estimation, the X , Y , and
Z coordinates of the points should be traversed to find the ex-
isting points. In a temporal prediction process, to compare
each point of the predicted frame with the points of the ref-
erence frame, the points of a cubical region in the reference
frame should be traversed. Figure 2 shows an example of the
G-arrays data layout for six points (i.e., P0 to P5) with differ-
ent coordinates. We have five arrays in this format.

• A V alue array stores the attribute values of the existing
points in the point cloud.

• A Zindex vector shows the Z coordinates of the corre-
sponding points in the V alue array.

Fig. 2. Presentation of (a) six points in a 3D space, (b) a list
of the points, and (c) the points in the proposed G-arrays.

• A Yindex vector shows the Y coordinates of the points
in the V alue array.

• A Ypointer vector stores the cumulative number of ex-
isting points with the Y coordinate equal to Yindex[i].
It is defined by the following recursive relation.

– Ypointr[0] = 0

– Ypointer[i+1] = Ypointer[i] + number of existing
points with their Y coordinates equal to yindex[i]

• An Xpointer vector stores the cumulative number of ex-
isting points with the X coordinate equal to the index of
Xpointer vector. It is defined by the recursive relation
below.

– Xpointer[0] = 0

– Xpointer[i+1] = Xpointer[i] + number of existing
points with X coordinate equal to i and non equal
Y values

3.2. Point Lookup

To access a specific point P = (p, q, r) in G-arrays, we should
first determine if this point exists or not. For this purpose, it is
enough to refer to index p of Xpointer array. If Xpointer[p +
1] − Xpointer[p] is non-zero, there exist at least one point
with the X coordinate equal to P . Then, the pointers of
Xpointer[p] and Xpointer[p+1] show the candidate locations
for finding the corresponding Y coordinates in the yindex ar-
ray. Searching the cells with indices between these two point-
ers in the Yindex array, the point with X and Y coordinates
equal to p and q could be found. Then, the index of the point
found in Ypointer array (i.e., k) is used to find the correspond-
ing Z coordinate. The Ypointer[k+1]−Ypointer[k] shows the



number of points with X and Y coordinates equal to p and q
respectively and the pointers of Ypointer[k] and Ypointer[k+1]
in Ypointer array show the candidate locations for finding the
corresponding Z coordinate in the Zindex array.

3.3. Temporal Prediction with G-Arrays

Figure 3 shows the proposed architecture for 3D point cloud-
temporal compression. First, we consider the first frame of
any input sequence as the reference for the second frame. We
employ a spatial coding for the first frame based on the prior
work on MPEG G-VCC [17]. Then, we consider the second
path for all the other frames as predicted frames, which in-
cludes several steps for clustering points, estimating cluster
motion, and generating point residual.

Fig. 3. Our proposed point cloud spatio-temporal encoding
based on G-arrays.

3.3.1. Clustering Points

The first step in the proposed temporal prediction technique
is clustering the points of the reference and predicted frames.
The clustering outcome is used to find the motion vectors.
The idea is that by clustering the consecutive frames, parts of
the frame with high similarity are most likely placed in the
corresponding clusters of reference and predicted frames. In
the motion estimation process, for each point of the predicted
frame, we want to look for the most similar point in the refer-
ence frame. Hence, the corresponding cluster of each point in
the reference frame is enough to find the most similar point.
The k-means algorithm is used for clustering of the refer-
ence and predicted frames. The right number of clusters in
k-means algorithm depends on a trade-off between the num-
ber of distance computations and the quality of clustering. We
consider eight initial center points at the corners of each frame
based on the minimum and maximum values of the X , Y and
Z coordinates.

3.3.2. Estimating Cluster Motion

Motion estimation is used to describe the movement of tex-
tures or objects in consecutive frames. When the best match-
ing block for a predicted block is found in the reference frame,
the corresponding movement between the reference and pre-
dicted blocks is represented by motion vector.
In the proposed approach, we employ a coarse-grained mo-
tion vector estimation algorithm. This algorithm uses the cen-
troids of the computed clusters in the previous step to estimate

the motion vectors as shown in Figure 4. Each cluster con-
tains points with similar coordinates. Hence, the amount of
changes in the centroids of the corresponding clusters from
the reference and predicted frames could be considered as
a good estimation of the amount of movement between the
points. Accordingly, the motion vectors are computed using
the centroids shown in Figure 4. Then, the motion vectors are
coded as part of the output bitstream.

Fig. 4. Finding motion vectors based on the clustering of
points in the reference and predicted frames.

3.3.3. Generating Point Residual

After computing motion vectors, a reconstructed frame using
the predicted frame and the estimated motion vectors is gen-
erated, the points of each cluster are displaced according to
its corresponding motion vector.
Finally, we should find the reconstructed error frame, often
referred to as the residual frame. The residual frame con-
tains the information to correct the error of motion estima-
tion process. For this purpose, the difference between the
attributes of the corresponding points in the reference and re-
constructed frames should be computed. But, the main is-
sue is how to find the corresponding point to each point of
the reconstructed block in the reference frame. Our proposed
scheme suggests to represent the reference frame in G-arrays
to search its points more quickly. A matching criterion such
as Mean Squared Error (MSE) or Sum of Absolute Differ-
ences (SAD) can be used to find the best MV per block. SAD
is preferable for VLSI implementation because of its simple
computational steps. Therefore, we use SAD for choosing the
best MV for a given block. After searching, the smallest SAD
candidate is chosen as the best matching reference for each
point of the reconstructed frame. Then, the residual frame is
created by calculating the difference between the RGBs of the
reconstructed and the reference frame points.

4. EVALUATIONS

In this section, we assess the performance of the proposed
compression scheme using G-arrays and point clustering. We
use four different sequences that capture human bodies in
motion, i.e., Soldier, Longdress, Loot, and Redandblack [16].
We study the benefits of temporal prediction in the com-
pression of geometry in 3D point cloud sequences. In our
proposed approach, the frames of the sequences are coded
sequentially. Each frame is coded in a way that its previous



frame is considered as a reference frame. For the baseline
method, all of the frames are coded using their best set of
parameters in the MPEG G-PCC open-source library [17].
We measure performance in terms of the output quality, com-
pression ratio, memory requirement, and lookup speedup.
There are several objective quality metrics available in the
literature to measure the quality of encoded point clouds.
One is a point-to-point metric that measures the quality us-
ing the point-based distances. For each point in the decoded
frame, the nearest neighbor is obtained in the original point
cloud frame and a distance-based mean squared error (MSE)
is computed over all pairs of points. But, since, the point
cloud points represent the surface of objects in a visual scene,
a point-to-plane metric is often used to better evaluate the
output quality. The point-to-plane metric approximates the
underlying surface at each point as a plane. This metric re-
sults in smaller errors for the points that are closer to the
surface [21]. We study various quantization parameters (QP
= 11, 10, and 9) for our simulations. Where the quantization
parameter determines the number of bits representing each
component of the points. The PSNR versus compression ra-
tio curves are shown in Figure 5 to compare the performance
of our method with that of the baseline. The results show
that the proposed method improves the compression ratio for
various output qualities over the baseline MPEG G-PCC.

Fig. 5. PSNR versus the compression ratio for various test
sequences for baseline method and our proposed method.

To further evaluate the performance of the proposed tem-
poral encoding, we consider a representative metric based on
both quality and the compression ratio. The goal is to simulta-
neously increase the compression ratio and quality. The new
metric is defined as the product of the compression ratio and
PSNR. Figure 6 shows the comparison of the baseline and
our proposed method based on this metric. The results indi-
cate that the proposed method improves the compression ratio
and quality by averages of 13-30% over the MPEG G-PCC.

We also evaluate the performance of the G-arrays as com-
pared to octrees in terms of memory consumption and point
lookup speed. Table 1 shows the memory requirements of our
method compared to the baseline method. Our method uses

Fig. 6. The product of PSNR and compression ratio (PCR)
for various quantization parameters (QP) for baseline method
and our proposed method.

the G-arrays to store the points and search for the best match-
ing ones. But, the baseline method uses the octree structure.
We observe more than 1.4×memory savings for the G-arrays
over the octrees. Moreover, the proposed G-arrays enable 16-
54× better point lookup speed as compared to the state-of-
the-art octrees. Our simulation results indicate that G-arrays
can replace octrees in point cloud processing to enable signif-
icantly faster point lookups and lesser memory consumption.
Even in the existing systems that are not designed to use the
G-arrays as an alternative to octrees, we can use the proposed
G-arrays in the post-processing stages. Before or after encod-
ing/decoding a point cloud sequence, further post-processing
operations may be applied to the 3D point cloud, such as re-
shaping objects, merging clouds, and adding new points to
obtain a smoother point cloud.

Table 1. Memory savings and performance gains of the pro-
posed G-arrays over the state-of-the-art octree.

Sequence name Memory saving Lookup speedup
over octree over octree

Soldier 1.44× 16.59×
Longdress 1.43× 15.97×

Redandblack 1.42× 23.58×
Loot 1.40× 54.78×

5. CONCLUSIONS

In this paper, we presented a novel data structure for process-
ing point clouds, called G-arrays, that relies on five arrays. A
cluster-based temporal prediction approach was examined us-
ing the proposed G-arrays. Our simulation results on a set of
point cloud sequences showed that the proposed format pro-
vides faster point lookup operations and less memory con-
sumption compared to the state-of-the-art octree used by the
MPEG G-PCC. Moreover, the proposed temporal prediction
approach improves the compression ratio and quality of the
geometric point clouds.



6. REFERENCES

[1] M. Hosseini and C. Timmerer, “Dynamic adaptive point
cloud streaming,” in Proceedings of the 23rd Packet
Video Workshop, 2018, pp. 25–30.

[2] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P Ce-
sar, P. A Chou, R. A Cohen, M. Krivokuća, S. Lasserre,
Z. Li, et al., “Emerging mpeg standards for point cloud
compression,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–
148, 2018.

[3] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan, “To-
ward practical volumetric video streaming on commod-
ity smartphones,” in Proceedings of the 20th Interna-
tional Workshop on Mobile Computing Systems and Ap-
plications, 2019, pp. 135–140.

[4] A. H Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and
O. Beijbom, “Pointpillars: Fast encoders for object de-
tection from point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 12697–12705.

[5] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep
continuous fusion for multi-sensor 3d object detection,”
in Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018, pp. 641–656.

[6] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frus-
tum pointnets for 3d object detection from rgb-d data,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2018, pp. 918–927.

[7] S. Wang, S. Suo, W.-C.hiu Ma, A. Pokrovsky, and R. Ur-
tasun, “Deep parametric continuous convolutional neu-
ral networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp.
2589–2597.

[8] S. Zhao, H. Zhang, S. Bhuyan, C. Subhra Mishra,
Z. Ying, M.T. Kandemir, A. Sivasubramaniam, and C.R.
Das, “Déja view: Spatio-temporal compute reuse for
energy-efficient 360 vr video streaming,” 2020.

[9] Y. Zhu, R. Mottaghi, E. Kolve, J.J. Lim, A. Gupta,
L. Fei-Fei, and A. Farhadi, “Target-driven visual navi-
gation in indoor scenes using deep reinforcement learn-
ing,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[10] R. Mekuria, k. Blom, and Cesar P., “Design, implemen-
tation, and evaluation of a point cloud codec for tele-
immersive video,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 4, pp. 828–
842, 2016.

[11] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto,
T. Suzuki, and A. Tabatabai, “An overview of ongo-
ing point cloud compression standardization activities:
video-based (v-pcc) and geometry-based (g-pcc),” AP-
SIPA Transactions on Signal and Information Process-
ing, vol. 9, 2020.

[12] D. Meagher, “Geometric modeling using octree encod-
ing,” Computer graphics and image processing, vol. 19,
no. 2, pp. 129–147, 1982.

[13] J. Elseberg, D. Borrmann, and A. Nüchter, “One billion
points in the cloud–an octree for efficient processing of
3d laser scans,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 76, pp. 76–88, 2013.

[14] R. Schnabel and R. Klein, “Octree-based point-cloud
compression,” IGGRAPH 2006, vol. 6, pp. 111–120,
2006.

[15] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based
compression of dynamic 3d point cloud sequences,”
IEEE Transactions on Image Processing, vol. 25, no. 4,
pp. 1765–1778, 2016.

[16] Krivokuca M., Philip A.C., , and Savill P., “8i voxelized
surface light field (8ivslf) dataset,” 2018.

[17] “Mpeg.accessed: october 2020. [online]. available:
https://github.com/mpeggroup/mpeg-pcc-tmc13,” .

[18] Soohee H., “Towards efficient implementation of an oc-
tree for a large 3d point cloud,” Sensors, vol. 18, no. 12,
pp. 4398, 2018.

[19] K. Mammou, P. A. Chou, D. Flynn, M. Krivokuća, and
O. Nakagami, “G-pcc codec description v4,” ISO/IEC
JTC1/SC29/WG11 N18189, 2019.

[20] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression of
point cloud streams,” in 2012 IEEE International Con-
ference on Robotics and Automation. IEEE, 2012, pp.
778–785.

[21] Tian D., Ochimizu H., Feng C., Cohen R., and Vetro A.,
“Geometric distortion metrics for point cloud compres-
sion,” 2017.


