
Adaptive Time-based Encoding for Energy-Efficient Large Cache
Architectures

Payman Behnam
University of Utah
Salt Lake City, UT

behnam@cs.utah.edu

Naser Sedaghati
Imagination Technologies

San Francisco, CA
naser@sedaghati.org

Mahdi Nazm Bojnordi
University of Utah
Salt Lake City, UT

bojnordi@cs.utah.edu

ABSTRACT
Demanding larger memory footprint and relying heavily on data
locality has made last-level cache (LLC) a major contributor to
overall energy consumption in modern computer systems. As a
result, numerous techniques have been proposed to reduce power
dissipation in LLCs via low power interconnects, energy-efficient
signaling, and power-aware data encoding. One such technique
that has proven successful at lowering dynamic power in cache
interconnects is time-based data encoding that represents data with
the time elapsed between subsequent pulses on a wire. Regrettably,
a time-based data representation induces excessive transmission de-
lay per every block transfer, thereby degrading the energy efficiency
of memory intensive applications.

This paper presents a novel adaptive mechanism that monitors
characteristics of every application at runtime and intelligently
uses time-based codes for LLC interconnects, thereby alleviating
the diverse impact of longer transmission delay in time-based codes
while still saving significant energy. Two adaptation approaches
are realized for the proposed mechanism to monitor 1) application
phases and 2) memory bursts. Experimental results on a set of 12
memory intensive parallel applications on a quad-core system indi-
cate that the proposed encoding mechanism can improve system
performance by an average of 9%, which results in improving the
system energy-efficiency by 7% on average. Moreover, the proposed
hardware controller consumes less than 1% area of a 4MB LLC.

CCS CONCEPTS
• Computer systems organization → Architectures; • Hard-
ware→ Integrated circuits;

KEYWORDS
Energy-efficient architectures, time-based encoding
ACM Reference Format:
Payman Behnam, Naser Sedaghati, and Mahdi Nazm Bojnordi. 2017. Adap-
tive Time-based Encoding for Energy-Efficient Large Cache Architectures.
In E2SC’17: E2SC’17: Energy Efficient Supercomputing, November 12–17, 2017,
Denver, CO, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3149412.3149417

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
E2SC’17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5132-4/17/11. . . $15.00
https://doi.org/10.1145/3149412.3149417

1 INTRODUCTION
Contemporary microprocessors, optimized for operation latency,
tend to invest majority of the real estate accommodating very large
on-chip caches in order to achieve faster data transfer. Last-level
caches (LLCs) alone can consume a significant fraction of the total
processor energy. In large on-chip caches, transferring data blocks
between the cache controller and internal data arrays leads to sig-
nificant switching activities over long and capacitive wires that
dissipate more than 80% of the cache energy [24]. The latest scal-
ing trends also approve that such high level of dynamic power for
interconnects will continue in the billion-transistor processors era
[8, 16].

Architectural techniques have been developed to improve dy-
namic energy consumption of the LLC interconnect, focusing on
different aspects of the equation P = αCV 2 f , where alpha repre-
sents switching activity, C is the capacitance load, V is the supply
voltage, and f is frequency. However, techniques for reducing the
activity factor on wires have proven to be more applicable to differ-
ent classes of interconnects [4, 7, 32, 37]. Besides data compression
mechanisms [9, 10, 26, 29, 33], data encoding is also considered as
an effective approach in reducing the number of state transitions
(i.e. bit flips) on a wire.

A recent data encoding scheme, DESC [6], showcased time-based
data representation [27] for reducing the activity factor on the
highly capacitive LLC interconnects. As opposed to standard binary
encoding where every clock cycle on a bus wire could represent a
single bit (i.e. and potentially a state transition), DESC represents
information based on the time (i.e. number of cycles) elapsed be-
tween two consecutive pulses on a single wire; limiting the number
of switching events to one per transmission. However, such low
level of switching activities could come at a high price of sensitivity
to the transferred values.

For illustration purposes only, consider transferring a block of
B bits over W wires. Standard binary encoding can work with
WB = W wires, while DESC only requires WD =

W
C where C

indicates the chunk size. In this setting, standard binary consumes
TB = ⌈B/WB ⌉ cycles (in parallel mode) whereas DESC can finish
the transfer in x cycles where x ∈ [β, 2C β] and β = B

C×WD
. For

example, for a 512-bit block on a 256-wide bus, standard binary
signaling takes exactly 2 cycles while DESC (with C = 4) can
instead consume from 2 to 30 cycles (on a narrowerWD = 64 bit
bus). Consequently, DESC’s transfer latency becomes very sensitive
to the value range of x , making it not always the best choice from
performance point of view.

https://doi.org/10.1145/3149412.3149417
https://doi.org/10.1145/3149412.3149417
https://doi.org/10.1145/3149412.3149417

E2SC’17, November 12–17, 2017, Denver, CO, USA P. Behnam et al.

Figure 1 shows the average time consumed for transferring cache
blocks for a set of 12 parallel applications on a 4MB last level cache.
1

0
0.5
1

1.5
2

2.5
3

3.5
4

C
ac

he
 B

lo
ck

 T
ra

ns
fe

r
Ti

m
e N

or
m

al
iz

ed
 to

C

on
ve

nt
io

na
l B

in
ar

y
En

co
di

ng

Figure 1: DESC bandwidth overheads: average number of cy-
cles consumed for transferring cache blocks over a 4MB last
level cache.

Figure 1 confirms that, on average, a data transfer using DESC
interface could take 3.15× longer than the standard binary coun-
terpart. Although DESC has shown overall energy improvements
because of reduced switching activity and fewer wires [6], this
increase in bandwidth (i.e. by 3.15×) has a significant impact on the
overall execution time and system energy. Such combined effect on
performance and energy signifies that in order to have an energy-
efficient LLC interconnect, the system needs to be adaptive and
able to optimize for both (i.e. using metrics such as energy-delay
product EDP).

This paper presents an adaptive time-based encoding scheme
that can learn the execution phases andmemory access bursts in the
application to make intelligent adjustments in the data exchange
protocol accordingly. The key idea is to accurately detect phases
and bursts of LLC requests and provide an encoding choice that
can be changed at run-time depending on the workload behavior.
Two approaches are studied for such runtime adaptation: 1) a phase
adaptive mechanism that relies on a history based decision making
over the intervals of memory accesses, and 2) a burst adaptive
microarchitecture that constantly monitors the temporal bandwidth
utilization in LLC and chooses between time-based and non-time
based encodings. The goal for both approaches is to optimize the
overall system energy-delay product. Experimental results on a
set of memory intensive applications on a four-core system show
that the proposed adaptive mechanisms can improve (on average)
overall system performance and energy efficiency by 9% and 7%,
respectively. Moreover, hardware implementation overhead of the
proposed architectures is limited to less than 1% of the available
real estate of a 4MB LLC.

2 BACKGROUND
Energy consumption in traditional binary exchange methods (e.g.
serial or parallel) is data dependent: the transferred data determines
state transitions on the wires that directly translates into dynamic
power consumption. In the case of parallel data transfer (i.e. which
is mostly common in contemporary high performance memory
architectures), a data block of B bits is sent over a B-wide data
interconnect in a single cycle and little synchronization is needed
to be done between transmitter and receiver entities. However,
from power consumption point of view, and depending on the
1Detailed experimental setup is provided in Section 4.

binary encoding scheme, a transfer of 0 or 1 on every wire could
cause a state transition. The number of transitions (i.e. switching
activity factor) ranges from 0 to B, making the total number of
transitions variable at run-time. Numerous signaling schemes exist
for representing 0s and 1s on the interconnect wires. Most on-chip
signaling techniques employ two voltage levels for representing
bits; for example, non-return-to-zero (NRZ) represents 0s and 1s
with low and high voltages, and non-return-to-zero-inverted (NRZI)
technique relies on transition between low and high voltages for
signaling 1s and the absence transitions for showing 0s. None of
these schemes are able to make the number of switching activities
constant (and independent of the bit content).

A successful attempt to make the wire-switching constant, time-
based data exchange protocols (e.g. Pulse-Position Modulation) are
proposed wherein a data block is encoded by transmitting a single
pulse in a certain point in time (as opposed to the bit values them-
selves). The position of that pulse in a time span translates into a
desired data [14]. Although it requires a mechanism to synchronize
transmitters and receivers in order to avoid potential synchroniza-
tion errors, this technique has low interference and low power
usage making it attractive to use in various fields. Bojnordi et al.
[6] first proposed DESC2, an energy efficient time-based encoding
mechanism for LLCs to exchange data using synchronized coun-
ters. DESC partitions a block of data (i.e. cache line) into small
chunks and sent each chunk over two physical wires. To specify
the beginning of a transmission, DESC also uses an additional re-
set wire that is shared between all data lines. Depending on the
value of each chunk, the corresponding wire is toggled at a certain
time representing that value. At the receiving end, the number of
elapsed clock cycles between the reset signal and the toggling ac-
tion is computed to represent the value of the corresponding chunk.
DESC-enabled LLC benefits from a reduced activity factor but at
the expense of additional bandwidth. This extra bandwidth is some-
times high enough to overshadow the energy saved by reducing
the activity factor.

This paper argues that blind deployment of binary (i.e. NRZ
or NRZI) or DESC encoding schemes can hurt the overall system
performance or energy. We present a hybrid approach in which
the system is able to understand behavior of the running workload
and decides when a DESC or binary encoding is beneficial to the
overall system energy-delay product. Using such runtime feedback,
our proposed time-based adaptive encoding (ATE) solution then
take actions, accordingly.

3 ADAPTIVE TIME-BASED ENCODING
In order to address the shortcomings of both time-based encoding
(e.g. longer transfer latency in DESC [6]) and standard binary sig-
naling (i.e. high switching rate of NRZ(I)), this paper presents a
novel mechanism for Adaptive Time-based Encoding (ATE) that
optimizes system energy efficiency (i.e. energy-delay product EDP).
The key idea is to provide an opportunity for the LLC interconnect
to monitor the application behavior and pro-actively select "the
best" encoding scheme. In other words, ATE is designed to enable
adaptive deployment of time-based encoding (i.e. DESC) and guar-
antee higher system-level energy efficiency. From the LLC point

2DESC: data exchange using synchronized counters.

Adaptive Time-based Encoding for Energy-Efficient Large Cache Architectures E2SC’17, November 12–17, 2017, Denver, CO, USA

of view, the proposed scheme analyzes the application behavior
based on either a fixed number of consecutive requests (i.e. a phase)
or high-bandwidth short stream of requests (i.e. a burst). Accord-
ingly, this paper presents two alternative designs: Phase-based ATE
(PATE) and Burst-based ATE (BATE). This section provides thor-
ough explanation of the design ideas and challenges for PATE and
BATE.

3.1 Adaptation to Consumed Bandwidth
The proposed adaptive time-based encoding system constantly
monitors the average consumed LLC bandwidth (x) in order to
intelligently select the best encoding scheme to be applied to the
next single (or a group of) LLC data transfer(s). In this system, there
are only two choices at any point in time and the frequency of such
decision depends on the frequency of monitored events (i.e. phase
or burst). We define a decision function f (x ,n) (Equation 1) where
f ∈ [0, 1] and n determines slope of transition between the two
choices.

f (x ,n) =




1 : x < β

0 : x > α

(α−xα−β)
n : x ∈ [β ,α]

(1)

Evaluation of the decision function relies on computing bound-
aries of consumed bandwidth using behavior of both NRZ(I) and
DESC encoding schemes. On the one hand, the function requires
average delay per transferred cache block β = B/W , where B is the
LLC cache block size andW represents the number of wires. On
the other hand, the function computes maximum latency of DESC
encoding α =

β (2C−1)
C , where C describes the logical chunk size

of each cache block. Given the consumed bandwidth x , Equation 1
suggests three possible regions to make a decision for the best
encoding scheme (Figure 2).

(1) DESC Region corresponds to an interval wherein average
transfer latency of a set of cache blocks is less than the aver-
age latency of NRZ(I). In other words, sending previous cache
block(s) haven’t taken longer than what would have been,
had NRZ(I) been selected for data encoding. Thus, the deci-
sion for this region is do DESC encoding for “every” transfer
since history shows DESC has met the latency deadline as
well as the energy consumption.

(2) NRZ(I) Region is when the average latency is grater than
the maximum latency of DESC encoding, the function de-
cides to go with NRZ(I) for “every” transfer since the system
cannot tolerate additional latency that would have been en-
forced had DESC been chosen as the encoding scheme.

(3) Proportional Region covers a region where neither DESC
or NRZ(I) can satisfy the energy needs and the transfers have
to be proportionally divided between the two. The function
value in this transitional region determines how portions
of DESC or NRZ(I) are calculated. However, slope of the
curve shows how fast DESC proportions can be turned into
standard NRZ(I).

For the Proportional Region, transitioning from 1 to 0 can be
linear (i.e. n = 1), sub-linear (i.e. n > 1), or super-linear (n < 1).
It determines how fast the adaptive system must react to changes

Consumed
Bandwidth

D
ec

is
io

n

DESC Proportional NRZ(I)

! "

n=1
n=2

n= 0.5

0

1

Figure 2: Adaptation to consumed LLC bandwidth.

in the consumed bandwidth and is chosen to satisfy the need for
energy efficient execution. Figure 2 depicts the linear, super-linear
and sub-linear transitions for the decision functions when n =
0.5, 1, 2. Next, we propose two alternatives for adaptivity in data
encoding and how the decision function is used.

3.2 PATE: Phase Adaptive Time-based
Encoding

In order to provide adaptivity and receive constructive feedback
from the system, and from LLC’s point of view, a workload execu-
tion can be represented as a stream of requests S = R1,R2,R3, ...,Rs
where each request Ri leads to a transfer of one cache block. Alter-
natively, stream S can be viewed as sequence of fixed-sized intervals
S = P1, P2, ..., Pk , where each Pi is named a phase with L = size (Pi)
requests that are spread across time. The workload then can be
divided into total of k phases where k = ⌈ sL ⌉. Key idea behind the
proposed Phase Adaptive Time-based Encoding (PATE) is that the
system should be able to learn from Pi and decide for Pi+1 such that
the overall system level energy efficiency is improved. The assump-
tion being that majority of workloads inherently are susceptible
to repeating certain patterns of memory activities (e.g. a program
with regular control structures, such as for-loops, accessing pre-
dictable set of addresses). In a nutshell, and after phase Pi is over,
PATE receives the feedback and updates its decision function (i.e.
of choosing the DESC/NRZ(I) encoding permutations) accordingly,
for the next phase Pi+1.

3.2.1 Computing Average Consumed Bandwidth. Figure 3 shows
our proposed architecture for hardware implementation of PATE.
Suppose a phase consists of L transferred blocks (L = size (Pi)) and

Total Latency (15 bits)

PATE Counter (10 bits)

16-bit
Circular Shift Register

Load

= 1024

+
Reset

DESC Counter

}

5 bits

Average Bandwidth

DESC Enable

Decision Function
and

Pattern Selection
(32x16 bits LUT)

Figure 3: Illustrative example of the proposed architecture
for phase adaptive time-based encoding (PATEwith interval
size L = 1024 and chunk size C = 4).

E2SC’17, November 12–17, 2017, Denver, CO, USA P. Behnam et al.

Table 1: Possible values for 16-bit decision patterns.

16-bit Pattern
Binary Representation Hexadecimal Max 1-Dist 1-Count
0000 0000 0000 0000 0x0000 NA 0
0000 0000 0000 0001 0x0001 15 1
0000 0001 0000 0001 0x0101 7 2
0000 1000 0010 0001 0x0821 4 3

...
1111 1111 1111 1111 0xFFFF 0 16

chunk size of C bits. In order to indicate end of a phase, an up-
counter is incremented until it reaches L, then it is reset to 0. The
first interval P0 is transferred using DESC as the selected default
encoding scheme for all the L blocks. As a result, the total transfer
latency Ttot is bounded by Tlb ≤ Ttot ≤ Tub where Tlb = Lβ
and Tub = Lβ (2C − 1). In other words, β ≤ Tavд ≤ β (2C − 1).
PATE computes a truncated average latency (Tavд which is the
consumed bandwidth x) by dropping log2 (L) least significant bits
of the total latency and using the remaining (loд2 (β) +C) MSB bits.
Therefore, the “Total Latency” register is (log2 (L)+ log2 (β)+C)-bit
wide. In the illustrative example shown in Figure 3, in order to
compute the average consumed bandwidth x , PATE reads only 5
most-significant bits of the total latency (and drops 10 remaining
LSB bits), which helps reduce the hardware complexity as well (i.e.
by avoiding floating point division for averaging).

3.2.2 Evaluation of Decision Function. To simplify the hardware
even further, the decision function is implemented as a lookup
table of size 2C entries where each entry in the table represents
one discrete (and approximate) value of the decision function. Each
distinct value corresponds to a pre-computed bit pattern of E bits.
As a result, the lookup table stores 2C rows of E bits each. Upon
reaching the end of phase Pi (i.e. PATE up-counter triggered), the
computed average bandwidth x is used to find the appropriate bit
pattern for the next phase Pi+1. The newly found pattern is then
loaded into a circular right shift register which is used to apply
DESC enable/disable decisions for the next L transfers.

Table 1 shows how f (x ,n) is converted into a set of pre-computed
16-bit values (i.e. patterns). As number of 1s grow, the computed
pattern guarantees to spread the 1s uniformly such that the dis-
tance between two consecutive 1s is (close to) maximum (shown
as Max 1-Dist in Table 1). Note that the set of possible patterns
is known and pre-computed; however, where in the look-up table
each pattern resides depends on the type of the decision function
(linear, sub-linear, or super-linear).

3.2.3 Enforcing the New Decision. A new decision is loaded into
the circular right shift register (shown in Figure 3) as an E-bit pat-
tern. Each bit in this pattern corresponds to one (or more) block
transfers. For every request, value of right-most bit in the pattern
is checked. If 1, the current request will be transferred in DESC for-
mat, otherwise NRZ. The number of transfers each bit corresponds
to indicates when the shift command of the circular right shift
register will be triggered. At the finest decision granularity, each
transfer can trigger the shift command, which means the decision
pattern repeats after every E transfers. Note that the objective is to

Decision Function
(Lookup Table)

DESC Max
Latency

+

NRZ Max
Latency

BATE Down Counter
5 bits

Load

> DESC Enable

LFSR

4 bits

Figure 4: Illustrative example of the proposed architecture
for burst adaptive time-based encoding.

interleave DESC/NRZ(I) transfers as much as possible to avoid any
undesirable latency overheads (as shown in Table 1).

In addition to PATE as a hybrid of DESC and NRZ encoding
schemes, we also introduce PATE-I which is similar conceptually the
same as PATE except that NRZI is used as the alternative encoding
for when DESC is disabled.

3.3 BATE: Burst Adaptive Time-based
Encoding

Phase adaptivity is practical when there is similarity between con-
secutive phases that could help make intelligent decision for incom-
ing transfers. For the workloads with non-uniform behaviors, we
propose Burst Adaptive Time-based Encoding (BATE), to shorten
the reaction time to sudden burstiness in traffic and bring adaptiv-
ity to a very fine granularity—i.e., a single transfer. More precisely,
BATE views a stream of requests S = R1,R2, ...,Rs and looks at Ri
to make a decision about encoding scheme for Ri+1. Like PATE, the
decision function for BATE can be formulated using Equation 1.

For BATE encoding, x is the time budget left (i.e. maximum
transfer time minus the elapsed time from the previous transfers).
The key idea is that when the remaining time budget is low enough,
the decision function has to safely recommend a DESC transfer for
the next block. However, if budget is high (i.e. not enough time
has passed since last DESC transfer), the function chooses NRZ
for the next transfer. Otherwise, a random number r is generated
and compared against the computed f (x ,n). If f (x ,n) > r then
the decision is DESC, otherwise NRZ. Once a decision is made for
the next transfer, the time budget is incremented by either α or β ,
depending on whether decision was DESC or NRZ, respectively.

Figure 4 demonstrates an example architecture for Burst Adap-
tive Time-based Encoding (BATE). The down-counter keeps track
of the current time budget. To simplify the hardware implemen-
tation, decision function is implemented as a lookup table which
contains quantized values of the BATE curve when the budget is in
[β,α] range. The budget value is used to index the table and find
an approximate (and pre-computed) decision function value. The
found value is then compared against a pseudo-random number (i.e.
LFSR block) and the output is used to enable or disable the DESC
encoding.

For BATE implementation, we also consider an alternative where
NRZ is replaced by NRZI, which is named BATE-I in our evaluations.

Adaptive Time-based Encoding for Energy-Efficient Large Cache Architectures E2SC’17, November 12–17, 2017, Denver, CO, USA

Table 2: Simulation parameters.

Component Parameters
Processor core four cores, 4-issue out-of-order core,

128 ROB entries, 3.2 GHz
IL1 cache (per core) 64KB, direct-mapped, 64B block,

hit/miss delay 2/2
DL1 cache (per core) 64KB, 4-way, LRU, 64B block,

hit/miss delay 2/2, MESI protocol
L2 cache (shared) 4MB, 16-way, LRU, 64B block,

hit/miss delay 19/12
Temperature 350°K (77°C)

DRAM 2 DDR4-1600 memory channels, FP-FCFS

4 EXPERIMENTAL SETUP
In this section, the empirical setups for the tools and the character-
istics of applications are explained. We assess the energy and delay
potentials of the proposed adaptive time-based encoding when
applied to a 4MB last level cache. We use hardware synthesis to
evaluate the area, delay, and power overheads of the proposed ar-
chitectures for ATE. A multicore systems is modeled to execution a
mix of 12 parallel benchmark applications for evaluating the overall
system energy and performance. Moreover, we implement three
baseline systems including NRZ, NRZI, DESC, and Bus Invert Cod-
ing (BIC) [30] interfaces for comparison with ATE. We estimate
the overall system power for ATE and each of the baseline inter-
faces using McPAT [22]. Similarly to the evaluations performed by
the prior work on DESC [6], we explore the design space of each
baseline interface to find the best performing configuration.

4.1 Hardware Synthesis
To assess the area, delay, and power overheads of proposed hard-
ware, we use logic synthesis with FreePDK [12] at the 45nm tech-
nology node. Similarly to prior work [5], the results are then scaled
down to 22nm. We use CACTI [24] to model all of the lookup tables
required for the proposed microarchitectures.

4.2 System Architecture
We heavily modify the ESESC simulator [1] to model a multi-core
out-of-order processor interfacedwith twoDDR4-1600 DRAM chan-
nels. The system includes a 4MB L2 cache comprising a total of
256 sub-arrays organized into 4 banks and 4 sub-banks per bank.
Table 2 shows the simulation parameters.

4.3 Last-Level Cache Architecture
SRAM-based last level caches contribute to the energy and perfor-
mance of microprocessors, significantly. As a result of consuming
a large number of transistors for building a last level cache, exces-
sive leakage energy is dissipated in its storage cells and peripheral
circuitry. Numerous optimization techniques have been proposed
in the literature to alleviate this problem [13, 15, 17, 18, 23, 28, 31],
which have to be considered for designing an energy-efficient last
level cache. A comprehensive search is required to find the most en-
ergy efficient cache architecture for a particular system. We employ
CACTI and ESESC to perform a search in the design space of L2
cache and to find the most energy efficient cache organization and

Table 3: Applications and data sets.

Label Benchmark Suite Input
CH Cholesky SPLASH-2 tk29.0
FFT Fast Fourier SPLASH-2 1048576 data

Transform points
OC Ocean SPLASH-2 514x514 ocean
RDX Radix SPLASH-2 2M integers
RT Ray Trace SPLASH-2 car
IS Integer Sort NAS Class A
MG MG NAS Class A
HIS Histogram Phoenix 100MB file
LR Linear Regression Phoenix 50MB key file
PCA Principal Component Phoenix 1000 x 2000

Analysis matrix
SM String Match Phoenix 10MB key file
WC Word Count Phoenix 10MB text file

underlying technology for the cells and interconnects. Similarly
to prior work [6], we explore various transistor types, including
the ITRS high performance (HP), ITRS low power (LOP), and ITRS
low standby power (LSTP) devices [24]. We also study the energy
efficiency of LLC for various numbers of banks and data wires while
simulating all 12 benchmark applications to find the most energy
efficient cache design parameters for ATE and each of the baseline
systems.

4.4 Benchmark Applications
We choose a mix of 12 data-intensive benchmark applications from
three parallel suites: Phoenix [36], SPLASH-2 [35], and NAS [2]. All
of the applications are compiled using GCC with the -O3 optimiza-
tion flag. Table 3 shows the description of the evaluated benchmarks
and their input sets. All of these parallel applications are simulated
to completion.

5 EVALUATION
In this section, we first present the results of hardware synthesis for
the proposed PATE(I) and BATE(I) architectures. Next, we provide
system level energy and performance comparisons between the
proposed architectures and the baseline systems to evaluate the
impact of adaptive time-based encoding on energy-efficiency and
performance. To better understand various optimization aspects
of the proposed architectures, we present details of the decisions
made for each benchmark application and a sensitivity analysis
on various types of the decision function. We also illustrate the
sensitivity of energy-efficiency to interval length in PATE(I).

5.1 Synthesis Results
Our synthesis results indicate negligible amounts of area, delay,
and power overheads for both PAT(I) and BATE(I) controllers. The
respective additional die areas consumed by the necessary hard-
ware controllers for PATE(I) and BATE(I) are 312µm2 and 268µm2,
which contribute to less than 1% of the 4MB LLC area. The peak
power consumption of PATE(I) and BATE(I) controllers are 0.519W
and 0.423W , respectively. Also, the synthesis results indicate that
the decision making process for PATE(I) and BATE(I) controllers
take up to 498ps and 426ps , respectively. We accurately consider

E2SC’17, November 12–17, 2017, Denver, CO, USA P. Behnam et al.

these overheads in our simulations for performance and energy
evaluations.

0.92

0.94

0.96

0.98

1

1.02

1.04

Sy
st

em
 E

ne
rg

y-
D

el
ay

Pr

od
uc

t N
or

m
al

iz
ed

 to

N
R

Z

NRZI BIC DESC PATE
PATE-I BATE BATE-I

7%

Figure 5: Energy efficiency of the proposed adaptive time-
based encoding compared with the conventional binary
NRZ(I), bus invert coding, and DESC. All the system energy-
delay products are normalized to that of NRZ.

5.2 Energy Efficiency
Figure 5 illustrates the relative system energy-delay product for
NRZ(I), bus invert coding, DESC, PATE(I) and BATE(I). The energy-
delay products are computed as geometric means across of of the 12
benchmark applications. The results indicate that all variations of
the proposed adaptive time-based encoding provide better energy
efficiency compared to the baselines. PATE, however, achieves su-
perior energy-efficiency among of the other schemes. As compared
with DESC, PATE improves the overall system efficiency (EDP) by
7% on average. Please notice that DESC provides the worst energy
efficiency due to significant increase in bandwidth consumption
per block (recall the 3.15× latency increase in Figure 1). The su-
perior energy-efficiency is achieved due to a reduction in average
block transfer delay from 3.15× (in DESC) to 2.06×, while signifi-
cant energy savings are still attained for PATE. This reduction in
block transfer delay results in decreasing total execution time of
the applications.

5.3 System Performance
Figure 6 shows the relative execution time for all 12 benchmark ap-
plications run on the NRZ(I), bus invert coding, DESC, PATE(I), and
BATE(I) systems. As compared with DESC, the proposed adaptive
encoding provides better execution times across all 12 applications.
PATE achieves the most reduction in the average execution time (by
9%) and BATE-I, the least (7%). The most significant time reduction
is achieved for the most cache intensive applications—e.g., 23% for
Ocean. In summary, the proposed adaptive encoding reduce the
overall execution time significantly; however, such performance
improvement can only lead to improving system energy-efficiency
if significant energy is also saved.

5.4 System Energy
Figure 7 shows the system energy consumption of the proposed
adaptive encoding architectures and the baseline systems running
the 12 benchmark applications. The results indicate that the pro-
posed adaptive schemes are successful at utilizing time-based data
encoding for saving system energy: the proposed architectures can

achieve within 5% of the DESC system energy. As compared to the
NRZ baseline, the proposed adaptive encoding schemes save 12-13%
of the overall system energy, on average. In summary, the proposed
adaptive encoding is able to decrease the overall system energy by
reducing the LLC wire-flips across all 12 applications. Only for the
application “Word Count”, BATE consumes more energy than the
baselines, which is mainly because of 1) increased leakage energy
due to a longer execution time and 2) relatively less reduction in
wire flips compared to other techniques.

5.5 Cache Design Space
The proposed adaptive time-based encoding creates new design
opportunities for implementing more energy-efficient last level
caches. Figure 8 shows the relative execution time and system
energy influenced by the application of NRZ(I), bus invert coding,
DESC, PATE(I) and BATE(I) to the last level cache. An ideal design
point could be an architecture with minimal energy consumption
and shortest execution time. As shown in the figure, the proposed
adaptive time-based encoding provides new LLC design possibilities
that are closer to the ideal system.

5.6 Encoding Decisions
The proposed adaptive time-based encoding is capable of striking a
balance between consumed bandwidth and energy consumption.
This is mainly accomplished through monitoring the LLC band-
width and making decisions on whether a time-based code should
be used for every transferred block. Our simulations indicate that de-
cisions made by each mechanism depends on characteristics of the
application and data set. Figure 9 illustrates the encoding decisions
made by the proposed adaptive techniques for all of the benchmark
applications. The results indicate that the adaptive mechanisms
choose to employ time-based codes for 49-75% of all transferred
blocks. Moreover, PATE(I) scheme employs time-based codes less
often than BATE(I), which is due to monitoring the average band-
width consumed by many more requests before making decisions.

5.6.1 Proportionality of Decisions. Figure 10 shows the sensi-
tivity of system energy-delay product to the type of function used
for decision making. The results indicate that a sub-linear function
(n = 2) can better improve the overall energy-efficiency for all of
the adaptive encoding mechanisms.

5.6.2 Length of PATE Intervals. We also observed that a medium
sized interval (L = 1024) works better for the BATE(I) scheme
(Figure 11).

6 RELATEDWORK
Numerous optimization techniques for caches and on-chip com-
munication have come to existence with different, yet orthogonal,
objectives to what this paper presents. Solutions for optimizing ac-
cess time and energy (e.g. [20]) or overall cache energy (e.g. cache
compression [9, 10, 26, 29, 33] or cache bypassing [25]) have proven
to be effective. However, they are orthogonal (and can complement)
our solution of energy-efficient data exchange for cache intercon-
nects. Our proposed time-based encoding mechanism improves
cache energy efficiency by decreasing the number of data intercon-
nects and their signal transition rate, whichmakes it distinguishable

Adaptive Time-based Encoding for Energy-Efficient Large Cache Architectures E2SC’17, November 12–17, 2017, Denver, CO, USA

0

0.5

1

1.5

2

2.5

CH FFT HIS IS LR MG OC PCA RDX RT SM WC Geomean

To
ta

l E
xe

cu
tio

n
Ti

m
e N

or
m

al
iz

ed

to
 N

R
Z

NRZI BIC DESC PATE PATE-I BATE BATE-I

Figure 6: Total execution time of the benchmark applications running on the proposed architectures and the baseline systems.

0

0.5

1

1.5

CH FFT HIS IS LR MG OC PCA RDX RT SM WC Geomean

O
ve

ra
ll

Sy
st

em

En
er

gy
 N

or
m

al
iz

ed

to
 N

R
Z

NRZI BIC DESC PATE PATE-I BATE BATE-I

Figure 7: Overall system energy consumption for running the benchmark applications on the proposed architectures and the
baseline systems.

0.8

0.85

0.9

0.95

1

1.05

0.95 1.05 1.15 1.25

R
el

at
iv

e S
ys

te
m

 E
ne

rg
y

Relative Execution Time

NRZ
NRZI
BIC
DESC
PATE
PATE-I
BATE
BATE-I

IDEAL

Figure 8: Design space of last level caches with conventional
and the proposed encoding techniques.

0

0.2

0.4

0.6

0.8

D
ec
isi
on

PATE PATE-I BATE BATE-I

Figure 9: Encoding decisionsmade by the proposed adaptive
mechanisms for the benchmark applications.

from (and applicable to) other proposals related to interconnect
topology and wiring characteristics (e.g. [3, 24].

0.94

0.96

0.98

1

1.02

n=0.5 n=1.0 n=2.0

R
el

at
iv

e E
ne

rg
y-

D
el

ay
 P

ro
du

ct

PATE PATE-I BATE BATE-I

Figure 10: System energy-delay product vs. the proportion-
ality of decisions.

0.94

0.96

0.98

1

L=64K L=1024 L=64

R
el

at
iv

e E
ne

rg
y-

D
el

ay
 P

ro
du

ct

PATE PATE-I

Figure 11: System energy-delay product as the interval
length varies from 64 to 64K requests.

Related to dynamic energy and switching activity of the cache
interconnects, different bus-encoding encoding techniques (e.g. bus-
invert coding [30], on-line data clustering [34], etc) have shown
success in bounding the number of state transitions over the wires.
Our proposal shares the same objective and reduces the bit flips,

E2SC’17, November 12–17, 2017, Denver, CO, USA P. Behnam et al.

but takes a complete different approach (i.e. time-base encoding) to
represent information.

Besides dynamic, techniques for reducing static cache power (e.g.
Cache Decay [19], Drowsy Cache [11] or others [21]) have been
proposed to reduce cache leakage power. Although effective, these
proposals are orthogonal to our solution and can be combined to
achieve very highly energy-efficient cache designs.

Historically, information is represented in a time-based fashion
for pulse position modulation (PPM) in telecommunications [27]
and DESC [6] was the first proposal to adapt this concept in on-
chip caches. However, DESC is very data sensitive while lacking
adaptivity, and as shown in this paper, it can have huge negative
influence on the sustainable bandwidth of the LLC interconnect. Our
adaptive solution builds upon the DESC idea and finds a solution
that makes the LLC responsive to the changes in the application;
enables highly energy-efficient LLC designs.

7 CONCLUSIONS
Data movement on LLC interconnects contributes to a significant
portion of energy in modern processors. This paper examined a
novel adaptive time-based encoding to improve energy-efficiency
of large last level caches. We observed that the proposed adaptation
mechanism can improve the efficiency of large caches by creating
new design opportunities with more energy-efficient interfaces.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers for useful
feedback. This work was supported in part by University of Utah
seed grant.

REFERENCES
[1] Ehsan K. Ardestani and Jose Renau. 2013. ESESC: A Fast Multicore Simulator

Using Time-Based Sampling. In International Symposium on High Performance
Computer Architecture (HPCA). 448–459.

[2] D. H. Bailey et al. 1994. NAS parallel benchmarks. Technical Report. NASA Ames
Research Center. Tech. Rep. RNR-94-007.

[3] Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and
Venkatanand Venkatachalapathy. 2005. Microarchitectural Wire Management for
Performance and Power in Partitioned Architectures. In International Symposium
on High-Performance Computer Architecture (HPCA). 28–39.

[4] Bradford M. Beckmann and David A. Wood. 2003. TLC: Transmission Line
Caches. In International Symposium on Microarchitecture (MICRO). 43–54.

[5] Mahdi Nazm Bojnordi and Engin Ipek. 2012. PARDIS: A programmable memory
controller for the DDRx interfacing standards. In International Symposium on
Computer Architecture (ISCA). 13–24.

[6] Mahdi Nazm Bojnordi and Engin Ipek. 2013. DESC: Energy-efficient Data Ex-
change Using Synchronized Counters. In International Symposium on Microarchi-
tecture (MICRO). 234–246.

[7] Mahdi Nazm Bojnordi, Nariman Moezzi Madani, Mehdi Semsarzade, and Ali
Afzali-Kusha. 2006. An Efficient Clocking Scheme for On-Chip Communications.
In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 119–122.

[8] G. Chandra, P. Kapur, and K.C. Saraswat. 2002. Scaling trends for the on chip
power dissipation. In Interconnect Technology Conference (ITC). 170–172.

[9] Daniel Citron. 2004. Exploiting Low Entropy to Reduce Wire Delay. IEEE
Computer Architecture Letters 3 (2004).

[10] Julien Dusser, Thomas Piquet, and André Seznec. 2008. Zero-Content Augmented
Caches. Rapport de recherche RR-6705. INRIA.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. 2002. Drowsy Caches:
simple techniques for reducing leakage power. In International Symposium on
Computer Architecture. 148–157.

[12] FreePDK [n. d.]. FreePDK 45nm Open-Access Based PDK for the 45nm Technol-
ogy Node. ([n. d.]). http://www.eda.ncsu.edu/wiki/FreePDK.

[13] Masaki Fujigaya, Noriaki Sakamoto, Takao Koike, Takahiro Irita, KoheiWakahara,
Tsugio Matsuyama, Keiji Hasegawa, Toshiharu Saito, Akira Fukuda, Kaname
Teranishi, Kazuki Fukuoka, Noriaki Maeda, Koji Nii, Takeshi Kataoka, and Toshi-
hiro Hattori. 2013. A 28nm High-k metal-gate single-chip communications

processor with 1.5GHz dual-core application processor and LTE/HSPA+-capable
baseband processor. In International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC). 156–157.

[14] Y. Fujiwara. 2013. Self-Synchronizing Pulse Position Modulation With Error
Tolerance. IEEE Transactions on Information Theory 59, 9 (Sept 2013), 5352–5362.

[15] Varghese George, Sanjeev Jahagirdar, Chao Tong, K. Smits, Satish Damaraju, Scott
Siers, Ves Naydenov, Tanveer Khondker, Sanjib Sarkar, and Puneet Singh. 2007.
Penryn: 45-nm next generation Intel core 2 processor. In IEEE Asia Solid-State
Circuits Conference (ASSCC). 14–17.

[16] Nikos Hardavellas, Michael Ferdman, Anastasia Ailamaki, and Babak Falsafi.
2010. Power Scaling: the Ultimate Obstacle to 1K-Core Chips. In Technical Report
NWU-EECS-10-05.

[17] D. James. 2012. Intel Ivy Bridge unveiled - The first commercial tri-gate, high-k,
metal-gate CPU. In IEEE Custom Integrated Circuits Conference (CICC). 1–4.

[18] E. Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, F. Hamzaoglu, U. Bhattacharya, K.
Zhang, K. Mistry, and M. Bohr. 2012. A 4.6GHz 162Mb SRAM design in 22nm tri-
gate CMOS technology with integrated active VMIN-enhancing assist circuitry.
In IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). 230–232.

[19] S. Kaxiras, Z. Hu, and M. Martonosi. 2001. Cache Decay: Exploiting Genera-
tional Behavior to Reduce Cache Leakage Power. In International Symposium on
Computer Architecture.

[20] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip caches. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X). 211–222.

[21] Nam Sung Kim, David Blaauw, and TrevorMudge. 2003. Leakage Power Optimiza-
tion Techniques for Ultra Deep Sub-Micron Multi-Level Caches. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’03). 627–.

[22] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In International
Symposium on Computer Architecture.

[23] N. Maeda, S. Komatsu, M. Morimoto, and Y. Shimazaki. 2012. A 0.41 uA standby
leakage 32Kb embedded SRAM with Low-Voltage resume-standby utilizing all
digital current comparator in 28nm HKMG CMOS. In Symposium on VLSI Circuits
(VLSIC). 58–59.

[24] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. 2007. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches With CACTI 6.0. In
International Symposium on Microarchitecture (MICRO).

[25] J. J. K. Park, Y. Park, and S. Mahlke. 2016. A bypass first policy for energy-efficient
last level caches. In International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). 63–70.

[26] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W. Keck-
ler. 2016. A case for toggle-aware compression for GPU systems. In International
Symposium on High Performance Computer Architecture (HPCA). 188–200.

[27] J. G. Proakis. 1995. Digital Communications. Third Edition, McGraw-Hill.
[28] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. 2006. A Dual-Core Multi-

Threaded Xeon Processor with 16MB L3 Cache. In IEEE International Solid-State
Circuits Conference (ISSCC). Digest of Technical Papers. 315–324.

[29] A. Seznec. 1994. Decoupled sectored caches: conciliating low tag implementation
cost. In International Symposium on Computer architecture (ISCA). 384–393.

[30] Mircea R. Stan and Wayne P. Burleson. 1995. Bus-invert coding for low-power
i/o. IEEE Transactions on VLSI Systems (1995), 49–58.

[31] Fumihiko Tachibana, Osamu Hirabayashi, Yasuhisa Takeyama, Miyako Shizuno,
Atsushi Kawasumi, Keiichi Kushida, Azuma Suzuki, Yusuke Niki, Shinichi Sasaki,
Tomoaki Yabe, and Yasuo Unekawa. 2013. A 27% active and 85% standby power
reduction in dual-power-supply SRAM using BL power calculator and digitally
controllable retention circuit. In IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 320–321.

[32] A.N. Udipi, N. Muralimanohar, and R. Balasubramonian. 2009. Non-uniform
power access in large caches with low-swing wires. In International Conference
on High Performance Computing (HiPC). 59–68.

[33] Luis Villa, Michael Zhang, and Krste Asanovic. 2000. Dynamic zero compression
for cache energy reduction. In MICRO. 214–220.

[34] S. Wang and E. Ipek. 2016. Reducing data movement energy via online data clus-
tering and encoding. In International Symposium on Microarchitecture (MICRO).
1–13.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2
Programs: Characterization and Methodological Considerations. In ISCA. 24–36.

[36] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. 2009. Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory system. In International
Symposium on Workload Characterization.

[37] Hui Zhang and J. Rabaey. 1998. Low-swing interconnect interface circuits. In
International Symposium on Low Power Electronics and Design. 161 –166.

http://www.eda.ncsu.edu/wiki/FreePDK

	Abstract
	1 Introduction
	2 Background
	3 Adaptive Time-based Encoding
	3.1 Adaptation to Consumed Bandwidth
	3.2 PATE: Phase Adaptive Time-based Encoding
	3.3 BATE: Burst Adaptive Time-based Encoding

	4 Experimental Setup
	4.1 Hardware Synthesis
	4.2 System Architecture
	4.3 Last-Level Cache Architecture
	4.4 Benchmark Applications

	5 Evaluation
	5.1 Synthesis Results
	5.2 Energy Efficiency
	5.3 System Performance
	5.4 System Energy
	5.5 Cache Design Space
	5.6 Encoding Decisions

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

