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Overview

¨ Upcoming deadline
¤ Tonight: homework assignment will be posted

¨ This lecture
¤ Basics of DRAM controllers
¤ Memory access scheduling
¤ Bank level parallel scheduler
¤ Thread cluster scheduling
¤ Self optimizing scheduler



DRAM Controller

¨ Translate memory read/write requests to DRAM 
commands
¤ DRAM controller enforces all of the timing constraints

[slide ref: Mutlu]



Memory Access Scheduling

¨ Command scheduling significantly reduces DRAM 
access time

[Rixner’00]

Without access scheduling

With access scheduling



FCFS vs. FR-FCFS

¨ Single bank memory
¨ READ(B0,R0,C0) READ(B0,R1,C0) READ(B0,R0,C1)

¨ FCFS

¨ FR-FCFS

Cmd ACT READ PRE ACT READ PRE ACT READ

Addr R0 C0 B0 R1 C0 B1 R0 C1

Cmd ACT READ READ PRE ACT READ

Addr R0 C0 C1 B0 R1 C0

Savings



FR-FCFS Scheduling

Row Buffer
Ro

w
 d

ec
od

er

Column decoder

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Request Buffer

T0: streaming thread
T1: non-streaming thread

Row size: 8KB, cache block size: 64B
128 requests of T0 serviced before T1

[Mutlu’07]

FR-FCFS policy: 1) row-hit first, 2) oldest first



Multi-Core Systems
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Interference in the DRAM System

¨ Threads delay each other by causing resource contention
¤ Bank, bus, row-buffer conflicts [MICRO 2007]

¨ Threads can also destroy each other’s DRAM bank 
parallelism 
¤ Otherwise parallel requests can become serialized 

¨ Traditional DRAM schedulers were unaware of inter-thread 
interference; they simply aim to maximize DRAM throughput
¤ Thread-unaware and thread-unfair
¤ No intent to service each thread’s requests in parallel
¤ FR-FCFS policy: 1) row-hit first, 2) oldest first

n Unfairly prioritizes threads with high row-buffer locality 



Compute

Compute

2 DRAM Requests
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Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

[Mutlu’08]

Bank Parallelism Interference



2 DRAM Requests

Parallelism-Aware Scheduler
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[Mutlu’08]



Bank 0 Bank 1
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[Mutlu’08]

Parallelism-Aware Batch Scheduling

¨ Schedule requests from a thread (to 
different banks) back to back
¤ Preserves each thread’s bank 

parallelism
¤ This can cause starvation…

¨ Group a fixed number of oldest 
requests from each thread into a 
“batch”
¤ Service the batch before all other 

requests
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System Performance



Take turns accessing memory

Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation è unfairness

thread C thread Bthread A

Does not starve

not prioritized è
reduced throughput

Single policy for all threads is insufficient

Problem: Conflicting Objectives

[Kim’09]



random-access streaming
reqreqreqreq

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

• All requests parallel
• High bank-level parallelism

• All requests è Same row
• High row-buffer locality

reqreqreqreq

activated row
reqreqreqreq reqreqreqreqstuck

Vulnerable to interference

Threads Are Different

[Kim’10]



1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

thread
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Thread Cluster Memory Scheduling

[Kim’10]



FRFCFS
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Results: Fairness vs. Throughput



Self-Optimizing DRAM Controller

¨ Problem: DRAM controllers difficult to design
¤ It is difficult for human designers to design a policy that can adapt itself 

very well to different workloads and different system conditions

¨ Idea: Design a memory controller that adapts its scheduling policy 
decisions to workload behavior and system conditions using machine 
learning

¨ Observation: Reinforcement learning maps nicely to memory control

¨ Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy

[Ipek’08]



Self-Optimizing DRAM Controller

[Ipek’08]



Self-Optimizing DRAM Controller

[Ipek’08]



Self-Optimizing DRAM Controller

[Ipek’08]


