DRAM COMMAND SCHEDULING

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY : :
U OF UTAT CS/ECE 7810: Advanced Computer Architecture

Overview
"

Upcoming deadline

O Tonight: homework assignment will be posted

This lecture

O Basics of DRAM controllers

O Memory access scheduling

O Bank level parallel scheduler
O Thread cluster scheduling

O Self optimizing scheduler

DRAM Controller
e

Translate memory read /write requests to DRAM
commands

O DRAM controller enforces all of the timing constraints

: Q .| 3 Q . .
G 5 & 'G N Table 2. Timing Constraints (DDR3-1066) [43]
< oo Qi < o<
tRC - ' Phase Commands Name Value
———tRAS———{ < tRP—>| ACT — READ
: : time -
Subarray —{[1. Activation 1. Activation }—) I ACT—s WRITE CRCD 15ns
| |
Peripheral & <tRCD-> ST | i <tRCD~> 76 time ACT — PRE tRAS 37.5ns
I/O-Circuitry - : - g READ — data tCL 15ns
<tCL—> || <tCL—> | time 2 WRITE = data tCWL 11.25ns
Bus >
m w data burst tBL 7.5ns
_ EBL tBL| 3 PRE— ACT tRP 15ns
<—first access latency—> | i TR
second access latency 1&3 ACT — ACT (tRAS+LRP) 52.5ns

Figure 5. Three Phases of DRAM Access

[slide ref: Mutlu]

<l

sferences (Bank, Row, Column)

<

References (Bank, Row, Column)

Memory Access Scheduling

Command scheduling significantly reduces DRAM
access time

Time (Cycles) Without access scheduling
1 23 456 7:8:9:10:11i12:13;14:15:16:17:18:19:20:21:22:23:24:25:26:27:28:29:30:31:32:33:34:35:36:37:38:39{40:41:42:43:44:45:46:47:48:49:50:51:52:53:54:55:56

(000 | P A |C
(0,1,0) P A |C
(0,0,1) P A |C
(0,1,3) P A |C
(1,0,0) P A |C
(1,1,1) P A |C
(1,0,1) P A |C
(1,1.2) o P A IC

Time (Cycles)

\/

1i2i3i4i5i6i7i8i9i10i11{12{13}14{15{16{17{18{19 Bank Precharge
0,0,0) P A |C
0,1,0) P A IC Column Access
0,0,1) C| B ; 2
0,1,3) B C]
100 [P | A C] ~ ¥
1,1,1) P A |C . .
1,0,1) C| - Row Activation
1,1,2) C]

With access scheduling [Rixner'00]

FCFS vs. FR-FCFS
—

0 Single bank memory
READ(BO,R0,CO) READ(BO,R1,C0) READ(BO,RO,C1)

FCFS

Cmd - m < ACT >-<READ>--< PRE >< ACT >—-<READ>---
Loy (oL@ (oo -(a

FR-FCFS Savings
—

Cmd - m < PRE >< ACT >--<READ> --------------------------
Addr - @< DD) e ——

FR-FCFS Scheduling

FR-FCFS policy: 1) row-hit first, 2) oldest first

——————————————————————————

R s T e et It
< | |
o TTTTTT
O
N ()] S S P HP
TO: Row O _g __________________________
TO: Row G & 1TT
TT0RBow10 1
TTO: RRow 10

Request Buffer Row Buffer

Row size: 8KB, cache block size: 64B

128 requests of TO serviced before T1
: [Mutlu’07]

Multi-Core Systems

threads’ requests
interfere

S

CORE Ol |[CORE1| |COREZ2| |CORE3
L2 L2 L2 L2
CACHE CACHE CACHE | |CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank O

DRAM
Bank 1

DRAM |

Bank 2

Multi-Core
Chip

\ Shared DRAM

_IDRAM

Bank 7

Memory System

Interference in the DRAM System

Threads delay each other by causing resource contention
O Bank, bus, row-buffer conflicts [MICRO 2007]

Threads can also destroy each other’s DRAM bank
parallelism

O Otherwise parallel requests can become serialized

Traditional DRAM schedulers were unaware of inter-thread
interference; they simply aim to maximize DRAM throughput
O Thread-unaware and thread-unfair
O No intent to service each thread’s requests in parallel
O FR-FCFS policy: 1) row-hit first, 2) oldest first

Unfairly prioritizes threads with high row-buffer locality

Bank Parallelism Interference

-
Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

A:

2 DRAM Requests Thread A: Bank 0, Row 1 |
B: — Thread B: Bank 1, Row 9]

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1 |

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

[Mutlu’08]

Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

A:

Thread A: Bank 0, Row 1 |
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Parallelism-aware Scheduler: Thread A: Bank 1, Row 1 |

2 DRAM Requests

_

Bank 1
2 DRAM, Requests

Saved Cyc'es: Average stall-time:

~1.5 bank access
latencies

[Mutlu’08]

Parallelism-Aware Batch Scheduling

-
Schedule requests from a thread (to

different banks) back to back 2

O Preserves each thread’s bank ,,__T_Z________T_Z _____ -
parallelism !, 12 \iBatCh

O This can cause starvation... i i

G fixed number of old e
roup a TiIxed number or oldest l‘\ ,’.

requests from each thread into a =~
“batch”

O Service the batch before all other

requests

[Mutlu’08]

System Performance

8.3% 6.1% 5.1%

€ 0.7 - ® FR-FCFS
= 0.6 A B FCFS

@ | BENFQ

S B STFM

B PAR-BS

4-core 8-core 16-core

[Mutlu’08]

Problem: Conflicting Objectives

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

thread A A (;)
-
thread B [
less memory h’gher thread A thread B

intensive priority
thread C
not prioritized =

starvation =» unfairness reduced throughput

Single policy for all threads is insufficient

[Kim’09]

Threads Are Different

random-access streaming
= stuck > reg

activated row

__—7

o Eeeee—— 7 E[/ % rows

Bank 1 Bank 2 Bank 3 Bank 4 Memory
* All requests parallel * All requests = Same row
* High bank-level parallelism * High row-buffer locality

-

Vulnerable to interference [Kim’10]

Thread Cluster Memory Scheduling

Group threads into two clusters

Prioritize non-intensive cluster

4 higher)

priority

Different policies for each cluster

. . Non-intensive
Memory-non-intensive cluster

Prioritized

»

thread

Threads in the system

[Kim*10] W

Results: Fairness vs. Throughput
-

Averaged over 96 workloads

]6A |
14 +

No)
12 - 'A’,

139%

Better fairness

Maximum Slowdown
© o

v

%o 8%

o

I
y

9.5 10

N
tn
o

8.5 9
Weighted Speedup

Better system throughput

TCM provides best fairness and system throughput
[Kim’09]

Self-Optimizing DRAM Controller
e

Problem: DRAM controllers difficult to design

O It is difficult for human designers to design a policy that can adapt itself
very well to different workloads and different system conditions

ldea: Design a memory controller that adapts its scheduling policy
decisions to workload behavior and system conditions using machine
learning

Observation: Reinforcement learning maps nicely to memory control

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy

[Ipek’08]

Self-Optimizing DRAM Controller

g ENVIRONMENT

Action a(t+1) Agent

> SYSTEM

<+— Data Bus Utilization (t)

— Scheduled Command (t+1) 1 Scheduler <«— State Attributes (t)

Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent

[Ipek’08]

Self-Optimizing DRAM Controller

State Actio?\
/ \ /

Transaction Queue
(K
-
// \\ m
// \\

~
// ~ \

Valid |Bank | Row | Col | Data qut;ZSt Rewa\“y

Figure 4: High-level overview of an RL-based scheduler.

DRAM

[Ipek’08]

Self-Optimizing DRAM Controller

Speedup over FR-FCFS
COORREEENN
SOOON BHOON
OCOO0O0O0OOO0O00O

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN
M In-Order FR-FCFS M RL M Optimistic

7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

=
09
=
]
]

2.20

Speedup over
1-Channel FR-FCFS

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN
M FR-FCFS - 1 Channel RL- 1 Channel M FR-FCFS - 2 Channels ERL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB /s peak

DRAM bandwidth
[Ipek’08]

