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Overview
"

Upcoming deadline

O Tonight: homework assignment will be posted

This lecture

O Basics of DRAM controllers

O Memory access scheduling

O Bank level parallel scheduler
O Thread cluster scheduling

O Self optimizing scheduler



DRAM Controller
e

Translate memory read /write requests to DRAM
commands

O DRAM controller enforces all of the timing constraints
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Figure 5. Three Phases of DRAM Access
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Memory Access Scheduling

Command scheduling significantly reduces DRAM
access time
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FCFS vs. FR-FCFS
—

0 Single bank memory
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FR-FCFS Scheduling

FR-FCFS policy: 1) row-hit first, 2) oldest first
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Row size: 8KB, cache block size: 64B

128 requests of TO serviced before T1
: [Mutlu’07]



Multi-Core Systems

threads’ requests
interfere
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Interference in the DRAM System

Threads delay each other by causing resource contention
O Bank, bus, row-buffer conflicts [MICRO 2007]

Threads can also destroy each other’s DRAM bank
parallelism

O Otherwise parallel requests can become serialized

Traditional DRAM schedulers were unaware of inter-thread
interference; they simply aim to maximize DRAM throughput
O Thread-unaware and thread-unfair
O No intent to service each thread’s requests in parallel
O FR-FCFS policy: 1) row-hit first, 2) oldest first

Unfairly prioritizes threads with high row-buffer locality



Bank Parallelism Interference

-
Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

A:

2 DRAM Requests Thread A: Bank 0, Row 1 |
B: — Thread B: Bank 1, Row 9]

Thread B: Bank 0, Row 99|
Thread A: Bank 1, Row 1 |

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

[Mutlu’08]



Parallelism-Aware Scheduler

Baseline Scheduler: Bank 0 Bank 1
2 DRAM Requests

A:

Thread A: Bank 0, Row 1 |
Thread B: Bank 1, Row 99|

Thread B: Bank 0, Row 99|
Parallelism-aware Scheduler: Thread A: Bank 1, Row 1 |

2 DRAM Requests

_

Bank 1
2 DRAM, Requests

Saved Cyc'es: Average stall-time:

~1.5 bank access
latencies

[Mutlu’08]




Parallelism-Aware Batch Scheduling

-
Schedule requests from a thread (to

different banks) back to back 2

O Preserves each thread’s bank ,,__T_Z________T_Z _____ -
parallelism !, 12 \iBatCh

O This can cause starvation... i i

G fixed number of old e
roup a TiIxed number or oldest l‘\ ,’.

requests from each thread into a =~
“batch”

O Service the batch before all other

requests

[Mutlu’08]



System Performance
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Problem: Conflicting Objectives

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput Does not starve

thread A A ( ; )
-
thread B [
less memory h’gher thread A thread B

intensive priority
thread C
not prioritized =

starvation =» unfairness reduced throughput

Single policy for all threads is insufficient

[Kim’09]



Threads Are Different

random-access streaming
= stuck > reg

activated row
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Bank 1 Bank 2 Bank 3 Bank 4 Memory
* All requests parallel * All requests = Same row
* High bank-level parallelism * High row-buffer locality

-

Vulnerable to interference [Kim’10]



Thread Cluster Memory Scheduling

Group threads into two clusters

Prioritize non-intensive cluster

4 higher )

priority

Different policies for each cluster

. . Non-intensive
Memory-non-intensive cluster

Prioritized

»

thread

Threads in the system

[Kim*10] W




Results: Fairness vs. Throughput
-

Averaged over 96 workloads
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TCM provides best fairness and system throughput
[Kim’09]



Self-Optimizing DRAM Controller
e

Problem: DRAM controllers difficult to design

O It is difficult for human designers to design a policy that can adapt itself
very well to different workloads and different system conditions

ldea: Design a memory controller that adapts its scheduling policy
decisions to workload behavior and system conditions using machine
learning

Observation: Reinforcement learning maps nicely to memory control

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy

[Ipek’08]



Self-Optimizing DRAM Controller
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Figure 2: (a) Intelligent agent based on reinforcement learning
principles; (b) DRAM scheduler as an RL-agent

[Ipek’08]



Self-Optimizing DRAM Controller
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Figure 4: High-level overview of an RL-based scheduler.

DRAM

[Ipek’08]



Self-Optimizing DRAM Controller

Speedup over FR-FCFS
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7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers
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Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB /s peak

DRAM bandwidth
[Ipek’08]



