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Overview

¨ Upcoming deadline
¤ Mar. 8th: The homework assignment will be posted.

¨ This lecture
¤ What cache coherence is unable to do

n Shared memory synchronizations
n Locks
n Barriers
n Transactional memory



Recall: Cache Coherence

¨ Coherency protocols (must) guarantee
¤ write propagation
¤ write serialization

¨ Coherency protocols do not guarantee
¤ only one thread accesses shared data
¤ threads start executing a section of code together

How to synchronize threads?

shared data

T1 T2



Shared Memory Synchronization

¨ Example

int mem[]; // large array
…
main() {

…
for(i=0; i<N; ++i) {

sum += mem[i];
}
avg = sum / N;
…

}

mem

P0 P1…

sum

avg



Shared Memory Synchronization

¨ Critical section problem
¤ How to order thread access to shared data?

¨ Memory barriers
¤ Force threads to start executing a section together

P1         … Pn

…
X ß X+1;
…

…
X ß X+1;
…

P1         … Pn
X ß X+1;
…

X ß X+1;
…

Y ß X+Y;

…



Synchronization Components

¨ Acquire method
¤ obtain the lock

¨ Waiting algorithm
¤ spin (busy wait)

n Repeatedly test a condition; additional traffic

¤ block (suspend)
n Let OS suspend the process; large resume overheads

¨ Release method
¤ allow other processes to proceed 



Critical Section Problem

¨ Definition
¤ N threads compete to use some shared data
¤ Each process has a code segment, called critical section, in 

which the shared data is accessed
¨ Need to provide

¤ Mutual exclusion: no two threads are allowed in the critical 
section

¤ Forward progress: no one outside the critical section may 
block other processes

¤ Fairness: bounded waiting times for entering the critical 
section



Basic Hardware for Synchronization

¨ Test-and-set – atomic exchange
¨ Fetch-and-op (e.g., increment)

¤ returns value and atomically performs op (e.g., 
increments it)

¨ Compare-and-swap
¤ compares the contents of two locations and swaps if 

identical

¨ Load-linked/store-conditional
¤ pair of instructions – deduce atomicity if second 

instruction returns correct value



Lock Example

¨ Test-and-set spin lock (TSL)

Problem: many memory reads and writes due to busy waiting
Question: what if a process is switched out of CPU during CS?



Lock Example

¨ Test-and-Test-and-set spin lock (TTSL)
¤ Spinning on read only data (local copy)

entry_section:
MOV R1, LOCK | copy lock to R1
CMP R1, #0 | if it was zero
JNE entry_section | if it wasn’t zero, loop

¨ Excessive memory traffic due to multiple cores 
spinning on a lock

¨ TTSL is unfair



Lock Example

¨ Ticket lock using fetch-and-op (increment)

¨ Advantage : Fair (FIFO)
¨ Disadvantage : Contention (Memory/Network)

lock:
myticket = fetch & increment (&(L->next_ticket));
while(myticket!=L->now_serving) {

delay(time * (myticket-L->now_serving));
}
unlock:
L->now_serving = L->now_serving+1;



Lock Example

¨ MCS linked-list based queue locks 
¤ Processors waiting on the lock are stored in a linked list 
¤ Every processor using the lock allocates a queue node (I) 

with two fields
n must_wait (bool) and next_node (pointer)

¨ Lock variable is a pointer to the tail of the queue 

wait
next

lock I

How to release MCS lock?



Lock Example

¨ Release MCS lock

wait
next

lockI



Load-Linked, Store-Conditional

¨ Example



Centralized Barrier

¨ A globally-shared piece of state keeps track of 
thread arrivals 
¤ e.g., a counter 

¨ Each of the threads
¤ updates shared state to indicate its arrival
¤ polls that state and waits until all threads have arrived 

¨ Then, it can leave the barrier 
¨ Since barrier has to be used repeatedly:

¤ state must end as it started 



Sense-Reversing Barrier

¨ Key idea: decouple spinning from the counter 
// global variables
int count = P;
bool sense = true;

// local variable
bool local_sense = true;

// barrier
local_sense = ! local_sense;
if(fetch_and_dec(&count) == 1) {

count = P;
sense = local_sense;

}
else {

while(sense != local_sense);
}

Keeps track of 
arrivals using 

count

Controls spinning 
using sense



Lock Freedom

¨ Priority inversion: a low-priority process is preempted while 
holding a lock needed by a high-priority process

¨ Convoying:  a process holding a lock is de-scheduled (e.g. 
page fault, no more quantum), no forward progress for 
other processes capable of running

¨ Deadlock (or Livelock): processes attempt to lock the same 
set of objects in different orders (could be bugs by 
programmers)

¨ Error-prone



Transactions

¨ A sequence of instructions that is guaranteed to 
execute and complete only as an atomic unit

Begin Transaction
Inst #1
Inst #2
Inst #3
…

End Transaction

¨ Satisfy the following properties
n Serializability: Transactions appear to execute serially.
n Atomicity (or Failure-Atomicity): A transaction either 

n commits changes when complete, visible to all; or 
n aborts, discarding changes (will retry again)



¨ Isolation
¤ Detect when transactions conflict
¤ Track read and write sets

¨ Version management
¤ Record new and old values

¨ Atomicity
¤ Commit new values
¤ Abort back to old values

Basic Transactional Mechanisms



Transactional Memory

¨ Intended to replace short critical sections
¤ Motivated by lock-free data structures

¨ Transactions
¤ Read and write multiple locations
¤ Commit in arbitrary order
¤ Implicit begin, explicit commit operations
¤ Abort affects memory, not registers

n Software manages restarting execution
n Validate instruction detects pending abort

[Herlihy’93]



Transactional Memory Architecture

M

S

S

XCommit

XAbort

Cache Transaction 
Cache

CPU

Memory

[Herlihy’93]



Hardware vs. Software TM

Hardware Approach
¨ Low overhead

¤ Buffers transactional state in 
Cache

¨ More concurrency
¤ Cache-line granularity

¨ Bounded resource

Software Approach
¨ High overhead

¤ Uses Object copying to keep 
transactional state

¨ Less Concurrency
¤ Object granularity

¨ No resource limits

Useful BUT Limited Useful BUT Limited



HTM Example

Tag data Trans? State Tag data Trans? state

atomic {
read A
write B =1

}

atomic {
read B

Write A = 2 
}

Bus Messages:



HTM Example

Tag data Trans? State Tag data Trans? state

B 0 Y S

atomic {
read A
write B =1

}

atomic {
read B

Write A = 2 
}

Bus Messages: 2 read B



HTM Example

Tag data Trans? State Tag data Trans? state

A 0 Y S

B 0 Y S

atomic {
read A
write B =1

}

atomic {
read B

Write A = 2 
}

Bus Messages: 1 read A



HTM Example

Tag data Trans? State Tag data Trans? state

A 0 Y S

B 1 Y M B 0 Y S

atomic {
read A
write B =1

}

atomic {
read B

Write A = 2 
}

Bus Messages: NONE



Conflict, visibility on commit

Tag data Trans? State Tag data Trans? state

A 0 N S

B 1 N M B 0 Y S

atomic {
read A
write B =1

}

atomic {
read B

ABORT

Write A = 2 
}

Bus Messages: 1 B modified



Conflict, notify on write

Tag data Trans? State Tag data Trans? state

A 0 Y S

B 1 Y M B 0 Y S

atomic {
read A
write B =1  

ABORT?
}

atomic {
read B

ABORT?

Write A = 2 
}

Bus Messages: 1 speculative write to B
2: 1 conflicts with me


