SNOOPING PROTOCOLS

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY : :
U OF UTAT CS/ECE 7810: Advanced Computer Architecture

Overview
"

Upcoming deadline
O Mar. 8™M: homework assignment release

O Multiple questions from the list of papers suggested for
reading until 11:59PM on Mar. 8™

Overview
"

This lecture

O Coherence basics

O Update vs. Invalidate
O A simple protocol

O lllinois protocol

O MESI protocol

O MOESI optimization

O Implementation issues

Recall: Shared Memory Model

Goal: parallel programs communicate through
shared memory system

Example: a write from P1 is followed by a read
from P2 to the same memory location (A)

P1 P2
Meml[A] = 1

Print Mem[A]

Problem: what if Mem[A] was cached by P1 or P2¢
O Writable vs. read-only data

Cache Coherence Protocol

Guarantee that all processors see a consistent value
for the same memory location

Provide the followings
O Write propagation that sends updates to other caches

O Write serialization that provide a consistent global
order seen by all processors

A global point of serialization is needed for
ordering store instructions

Bus Snooping

Relies on a broadcast infrastructure among caches

Every cache monitors (snoops) the traffic to keep the states of the cache
block up to date

O All communication can be seen by all

More scalable solution: ‘directory based’ schemes

L1 L1
LLC
1
Memory

[Goodman’83]

Write Propagation

Invalidate signal e B e ’
aeep asngle copy of e 11 1 121 21 £

(a) No coherence protocol: stale copy of A at P2

Update message T e [m
O Update all of the replicas

(b) Update protocol writes through to both copies of A

P ?“‘"(7T
Which one is better? Al
_'_1

(¢) Invalidate protocol eliminates stale remote copy

[slide ref.: Lipasti]

data after a write

£
%L\

Invalidate vs. Update
-

Invalidate signal
O Exclusive access rights for a single copy after every invalidation

O May lead to rapid invalidation and reacquire of cache blocks
(ping-ponging)

Update message

O Can alleviate the cost of ping-ponging; useful for infrequent
updates

O Unnecessary cost paid for updating blocks that will not be read
O Consumes significant bus bandwidth and energy

In general, invalidate based protocols are better

Implementation Tips
-

Avoid sending any messages if no other copies of the
cache block is used by other processors

Depending on the cache write policy, the memory
copy may be not up to date

O Write through vs. write back

O Write allocate vs. write no-allocate

We need a protocol to handle all this

Simple Snooping Protocol

Relies on write-through, write no-allocate cache
Multiple readers are allowed

O Writes invalidate replicas

Employs a simple state machine for each cache unit

Load/-- Store/BusWr

Cache Cache Load/BusRd i BusWr/--
Bus 4
A:0 Store/Bus\Wr
Memory

— Transaction by local actions
""" * Transaction by bus traffic

MSI: A Three State Protocol
e

Instead of a single valid bit, more bits to represent
O Modified (M): cache line is the only copy and is dirty
O Shared (S): cache line is one of possibly many copies
O Invalid (I): cache line is missing

Read miss makes a Read request on bus, transitions to S
Write miss makes a ReadEx request, transitions to M state

When a processor snoops ReadEx from another writer, it must
invalidate its own copy (if any)

Upgrading S to M needs no reading data from memory

MSI: State Machine

ObservedEvent/Action

BusRd/Flush
/ PrWr/BusRdX

PrWr/BusRdX PrRd/--

Prwvr/-- BusRdX/Flush

PrRd/BusRd

PrRd/--
BusRd/--

BusRdX/--

[Culler/Singh96]

MSI: Challenges
S —

Observation: on a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached and no other processor will cache it

O A processor reads a block and wants to write to the same block

Problem: we need to broadcast “invalidate” even for single
copy cache blocks

Solution: skip broadcasting “invalidate” signal

O If the cache knew it had the only cached copy in the system, it
could have written to the block without notifying any other cache

O Save energy and time

MESI: A Four State Protocol

ldea: Add another state indicating that this is the
only cached copy and it is clean

O Exclusive state

How: block is placed into the exclusive state if,
during BusRd, no other cache had it

O Wired-OR “shared” signal on bus can determine this

snooping caches assert the signal if they also have a copy

Result: silent transition E to M is possible on write

[Papamarcos’84]

MESI: State Machine

PrWr/BusRdX

BusRd/Flush

BusRd/ $ Transfer Prwr/BusRdX
PrRd (S’)/BusRd

PrRd (S)/BusRd

BusRdX/Flush (all incoming)

[Culler/Singh96]

MESI: Challenges

-
Shared state requires the data to be clean

O All caches that have the block have the up-to-date copy
and so does the memory

Observation: Need to write the block to memory when
BusRd happens when the block is in Modified state

Problem: Memory may be updated unnecessarily

O Other processor may want to write to the block again while
it is cached

O Memory accesses consume significant time and energy

MESI: Challenges

-
Solution 1: do not transition from M to S on a BusRd

O Invalidate the copy and supply the modified block to
the requesting processor directly without updating
memory

Solution 2: transition from M to S, but designate one
cache as the owner (O), who will write the block
back when it is evicted

O Now “Shared” means “Shared and potentially dirty”

O This is a version of the MOESI protocol

Ownership Optimization
e

Observation: shared ownership prevents cache-to-
cache transfer, causes unnecessary memory read

O Add O (owner) state to protocol: MOSI/MOESI
O Last requestor becomes the owner
O Avoid writeback (to memory) of dirty data

O Also called shared-dirty state, since memory is stale

Used in AMD Opteron

Implementation Challenges
-

Multi-layer cache architecture
Uncertain memory delay

Non-atomic bus transactions

Atomic Transaction Bus

Req

Delay

Response

Split-transaction Bus

Implementation Challenges

-
Deadlock

O All system activity ceases

O Cycle of resource dependences

Livelock

O No processor makes forward progress

O Constant on-going transactions at hardware level

O E.g. simultaneous writes in invalidation-based protocol
Starvation

O Some processors make no forward progress

O E.g. interleaved memory system with NACK on bank busy

Recall: Cache Coherence

-
Definition of coherence
O Write propagation
Write ate visible to other processors

O Write serialization

All write to the same location are seen in the same order by
all processes

P1 P2

Implementation Challenges
-

MSI| implementation
O Stable States

C() — (W)

[Vantrease’11]

Implementation Challenges

MSI| implementation
/——PQ

O Stable States /O \
O Busy states N

[Vantrease’11]

Implementation Challenges

MSI implementation o0 (2

O Stable States /O

O Busy states \

O Races C@ﬂ\
Unexpected events from rq \ /)

concurrent requests to CQ O
same block Q @ TQ /

O

[Vantrease’11]

Cache Coherence Complexity

"
A broadcast snooping bus (L2 MOETSI)

—

\ x (o
C v [Lepak’03]

Implementation Tradeoffs
-

Reduce unnecessary invalidates and transfers of blocks

m Optimize the protocol with more states and prediction
mechanisms

Adding more states and optimizations

m Difficult to design and verify
lead to more cases to take care of

race conditions

m Gained benefit may be less than costs (diminishing returns)

Coherence Cache Miss
-

Recall: cache miss classification

O Cold (compulsory): first access to block

O Capacity: due to limited capacity

O Conflict: many blocks are mapped to the same set
New class: misses due to sharing

O True vs. false sharing

Summary of Snooping Protocols

-
Advantages
O Short miss latency
O Shared bus provides global point of serialization

O Simple implementation based on buses in uniprocessors

Disadvantages
O Must broadcast messages to preserve the order

O The global point of serialization is not scalable

It needs a virtual bus (or a totally-ordered interconnect)

Scalable Coherence Protocols

-
Problem: shared interconnect is not scalable

Solution: make explicit requests for blocks

Directory-based coherence: every cache block has
additional information

O To track of copies of cached blocks and their states
O To track ownership for each block

O To coordinate invalidation appropriately

