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Overview

¨ Upcoming deadline
¤ Feb.3rd: project group formation

n Nathan Page and Bhavani Priya Sampath Kumar
n Tanmay Tirpankar and Hunter Jensen
n Ryan West, Anthony Chyr, and Jacob Larkin

¨ This lecture
¤ Cache interconnects
¤ Basics of the interconnection networks
¤ Network topologies
¤ Flow control



Where Interconnects Are Used?

¨ About 60% of the dynamic power in modern 
microprocessors is dissipated in on-chip interconnects

[Magen’04] [Intel Core i7]

• Six processor cores

• 8MB Last level cache



Cache Interconnect Optimizations



Large Cache Organization

¨ Using fewer subarrays gives increased area efficiency, 
but larger delay due to longer wordlines/bitlines

[Aniruddha’09]
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Large Cache Energy Consumption

¨ H-tree is clearly the dominant component of 
energy consumption

[Aniruddha’09]
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¨ A global wire management at the microarchitecture level

¨ A heterogeneous interconnect that is comprised of wires with 
varying latency, bandwidth, and energy characteristics

Heterogeneous Interconnects

[Balasubramonian’05]



¨ Better energy-efficiency for a dynamically scheduled 
partitioned architecture
¤ ED2 is reduced by 11%

¨ A low-latency low-bandwidth network can be effectively used 
to hide wire latencies and improve performance

¨ A high-bandwidth low-energy network and an instruction 
assignment heuristic are effective at reducing contention cycles 
and total processor energy.

Heterogeneous Interconnects

[Balasubramonian’05]



Non-Uniform Cache Architecture 

¨ NUCA optimizes energy and time based on the 
proximity of the cache blocks to the cache controller.

2MB @ 130nm

Bank Access time = 3 cycles
Interconnect delay = 8 cycles

16MB @ 50nm

Bank Access time = 3 cycles
Interconnect delay = 44 cycles

[Kim’04]



Non-Uniform Cache Architecture 

¨ S-NUCA-1
¤ Use private per-bank channel
¤ Each bank has its distinct access latency
¤ Statically decide data location for its given address 
¤ Average access latency =34.2 cycles
¤ Wire overhead = 20.9% à an issue
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Non-Uniform Cache Architecture

¨ S-NUCA-2
¤ Use a 2D switched network to alleviate wire area overhead
¤ Average access latency =24.2 cycles
¤ Wire overhead = 5.9% 

[Kim’04]
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Non-Uniform Cache Architecture

¨ Dynamic NUCA
¤ Data can dynamically migrate
¤ Move frequently used cache lines closer to CPU

[Kim’04]
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Non-Uniform Cache Architecture

¨ Fair mapping
¤ Average access time across all bank sets are equal
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Non-Uniform Cache Architecture

¨ Shared mapping
¤ Sharing the closet banks for farther banks
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Encoding Based Optimizations



¨ Bus invert coding transfers either the data or its complement to 
minimize the number of bit flips on the bus.

Cache Interconnect Optimizations
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Time-Based Data Transfer

¨ The percentage of processor energy expended on 
an 8MB cache when running a set of parallel 
applications on a Sun Niagara-like multicore 
processor

[Bojnordi’13]Relative CPU Energy



Time-Based Data Transfer

¨ Communication over the long, capacitive H-tree 
interconnect is the dominant source of energy 
consumption (80% on average) in the L2 cache

[Bojnordi’13]Relative Cache Energy



Key idea: represent 
information by the 
number of clock 
cycles between two 
consecutive pulses 
to reduce 
interconnect activity 
factor.

Time-Based Data Transfer
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[Bojnordi’13]



Time-Based Data Transfer

¨ Cache blocks are partitioned into small, contiguous chunks.

[Bojnordi’13]



Time-Based Data Transfer

[Bojnordi’13]



Time-Based Data Transfer

¨ L2 cache energy is reduced by 1.8x at the cost of 
less than 2% increase in the execution time.
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Interconnection Networks



Interconnection Networks

¨ Goal: transfer maximum amount of information with 
the minimum time and power

¨ Connects processors, memories, caches, and I/O 
devices
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Types of Interconnection Networks

¨ Four domains based on number and proximity of 
devices
¤ On-chip networks (OCN or NOC)

n Microarchitectural elements: cores, caches, reg. files, etc.

¤ System/storage area networks (SAN)
n Computer subsystems: storage, processor, IO device, etc.

¤ Local area networks (LAN)
n Autonomous computer systems: desktop computers etc.

¤ Wide area networks (WAN)
n Interconnected computers distributed across the globe



Basics of Interconnection Networks

¨ Network topology
¤ How to wire switches and nodes in the network

¨ Routing algorithm
¤ How to transfer a message from source to destination

¨ Flow control
¤ How to control the flow messages within the network



Network Topology



Network Topologies

¨ Regular vs. irregular graphs
¤ Examples of regular networks are mesh and ring

¨ Distances in the network
¤ Routing distance: number of links/hops along a route
¤ Network diameter: maximum number of hops per route
¤ Average distance: average number of links/hops across 

all valid routes



Example Topologies

¨ Bus
¤ Simple structure; efficient for small number of nodes
¤ Not scalable; highly contended
¤ Used in many processors

Bus Point to Point



Example Topologies

¨ Crossbar
¤ Complex arbitration
¤ High throughput and fast
¤ Requires a lot of resources
¤ Used in Sun Niagara I/II

[UltraSPARC T1]
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Example Topologies

¨ Segmented crossbar
¤ Reduce switching capacitance (~15-30%)
¤ Need a few additional signals to control tri-states

[Wang’03]



Example Topologies

¨ Goal: optimize for the common case
¤ Straight-through traffic does not go thru tristate buffers

[Wang’03]

¨ Some combinations of 
turns are not allowed
¤ Why?

Read the paper for details.



Example Topologies

¨ Express channels to reduce number of hops
¤ like taking the freeway

[Wang’03]



Example Topologies

¨ Ring
¤ Cheap; long latency
¤ IBM Cell

¨ Mesh
¤ Path diversity, efficient
¤ Tilera 100-core

¨ Torus
¤ More path diversity
¤ Expensive and complex



Example Topologies

¨ Tree
¤ Simple and low cost
¤ Easy to layout
¤ Efficiently handles local traffic
¤ Towards root, links are heavily contended

Fat Tree



Example Topologies

¨ Omega network
¤ Single path from source 

to destination

¤ Does not support all 
possible permutations

¤ Proposed to replace 
costly crossbars as 
processor-memory 
interconnect

[Gottlieb’82]



Flow Control



Sending Data in Network

¨ Circuit switching
¤ Establish full path; then send data
¤ Everyone else using the same link has to wait
¤ Setup overheads

¨ Packet switching
¤ Route individual packets (via different paths)
¤ More flexible than CS
¤ May be slower than CS



Handling Contention

¨ Problem
¤ Two packets want to use the same link at the same time

¨ Possible solutions
¤ Drop one
¤ Misroute one (deflection)
¤ Buffer one



Circuit Switching Example
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¨ Significant latency overhead prior to data transfer
¨ Other requests forced to wait for resources

[Lipasti]



Store and Forward Example
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¨ High per-hop latency
¨ Larger buffering required

[Lipasti]



Virtual Cut Through Example
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[Lipasti]

¨ Lower per-hop latency
¨ Larger buffering required



Wormhole Example

Blocked by other 
packets

Channel idle but 
red packet blocked 

behind blue

Buffer full: blue 
cannot proceed

Red holds this channel: 
channel remains idle 
until read proceeds

[Lipasti]

Allocating buffers on a flit-basis



Virtual Channel Example

Blocked by other 
packets

Buffer full: blue 
cannot proceed

[Lipasti]

Multiple flit queues per input port



Virtual Channel Buffers

¨ Single buffer per input
¨ Multiple fixed length queues per physical channel

Physical 
channels

Virtual 
channels

[Lipasti]


