LARGE CACHE DESIGN

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY : :
U OF UTAT CS/ECE 7810: Advanced Computer Architecture

Overview
"

Upcoming deadline

O Feb. 3 project group formation

This lecture

0 Gated Vdd/ cache decay, drowsy caches
O Compiler optimizations

O Cache replacement policies

O Cache partitioning

O Highly associative caches

Main Consumers of CPU Resources?
e

A significant portion of the processor die is
occupied by on-chip caches

Example: FX Processors
Main problems in caches

O Power consumption
Power on many transistors
O Reliability

Increased defect rate and errors

T —

™
Q
—
=]
O
g b
T

[i%

[source: AMD]

Leakage Power

dominant source for power consumption as
technology scales down

Pleakage — VXILeakage

100%

80%

60%

40%

20%

Leakage Power/Total Power

0%
1999 2001 2003 2005 2007 2009

Year

[source of data: ITRS]

Gated Vdd

Dynamically resize the cache (number of sets)

Sets are disabled by gating the path between Vdd
and ground (" stacking effect’)

bitine ~ Vdd_ - bitline
—] P
other possibilities,
L '# e.g., virtual Vdd
-
i - | wordline (see paper)
ated.V virtual Gnd shared among
I ol iz cells in same row
Gnd (5% total area cost)

[Powell00]

Gated Vdd Microarchitecture

address: tag + Index offset
@ DRI I-CACHE
o : minimum
resizing range size-bound siT’(

size mask: L4
0 K its
. v T
A masked index | v tag data block AR [2
upsize _ downsize g |3
miss count > miss-bound? 4= | = miss count < miss-bound? § v =

mask shift left mask shift right v —

miss
miss-bound —>< compare miss)4— miss counter |« @
count
yes i ?
\ L end of interval?)

threshold above/below which \ number of in_St_FUCtiOHS
cache is upsized/downsized between resizings

[Powell00]

Gated-Vdd |$ Effectiveness

due to additional misses

. \
g ., _! L1 Static Energy s)
% 08 L Extra Dynamic Energy 62)
§ 06 L Average Cache Size (%) B
L
o 04 / i i i |
2
© 02 |
£ 00 i ﬁ i D H
S N\ O Q g\ Q & \\

X & & R q PO & & o

& N Q c\ SRS

OO&Q ((\cb *Q* © \06\

High mis-predication costs!

[Powell00]

Cache Decay
S —

Exploits generational behavior of cache contents

Access Interval M : Miss H : Hit
M H H HH H M
| | | || | | -
| l' > L | | -
‘ Live time? Dead time TIME
NEW Last NEW
Generation Access Generation

100-500 cycles 1,000-500,000 cycles

[Kaxiras01]

Cache Decay
S —

o Fraction of time cache lines that are “dead”

©
810 — — [l [
= 09 _ B g m _
@ (0.8 — — — — e
.2 M [r— M
=07 . A HHHHHHF
2 06 M- A HHHHHHHHHHHHHHF
.=|05-'_'_"—'_' 1 T T mMTTrT MDD MMM DT r
R e e e e e B e e e o o o N
g o3 H4HHHHHHHHHHHHHHH
o2 HHHHAAHHHHHHHHHHHHHHHEHHHH
ceotHHHHHHHHHHHHHHHHHHHHHHHAF
=|00 T T T T TrTrTrTr T TTTTrT T T T T T T T T
S — >< — - e
T 25832 5ES3UeTSET2ITELELEE D
@ > E 52 @25 N 2% 2 2ol g S o S & w©
- S 2% 4 a € © > o‘og_g
-] q,“-"
o ; — w

32KB L1 D-cache
[Kaxiras01]

Cache Decay Implementation

[T T T T]]CLOBAL COUNTER

predication costs!

LOCAL 2-BIT COUNTERS
\‘-\ VALID BIT
[} M CACHE-LINE (DATA + TAG)
WRD i
V] CACHE-LINE (DATA + TAG)
WRD 1 -
ROW
DECODERS
CASCADED v v -
TICK
PULSE
T
High mis- w | M e
g WRD | 50 v Vo
Counter | Power-Off
° |>O

RESET

ALWAYS POWERED

SWITCHED POWER

T/ PowerOff

[Kaxiras01]

Drowsy Caches

T
Gated-Vdd cells lose their state
O Instructions /data must be refetched

O Dirty data must be first written back

By dynamically scaling Vdd, cell is put into o
drowsy state where it retains its value

O Leakage drops superlinearly with reduced Vdd (“DIBL”
effect)

O Cell can be fully restored in a few cycles

O Much lower misprediction cost than gated-Vdd, but
noise susceptibility and less reduction in leakage

Drowsy Cache Organization

drowsy bit

g ¢ J_ drowsy (set)

A

Y

Y

voltage controller

drowsy

Y

JERES

o

power line

SRAMs

word line

5 4

|

3 '.% VDD (1V) —’_LI

g 2 ['T VDDLow (0.3Y) _‘_,J

JIE SolyT

ells

Ny drowsy
N o I wake up (reset)

N)

word line _J
word line gate

drowsy signal

Keeps the contents (no data loss)

[Kim04]

truction B data

ms

100%
0% -

SouI| ASMOIP JO UONIBIg

Drowsy Cache Effectivenes

DAV
dd
WIRIIXIS
esow
seanj
ayenba
1sde
dunne

IN

XJ)I0A
Jasaed
ol
333
fyen

zdizq

[Kim04]

4K cycle drowsy period

Benchmarks

32KB L1 caches

Drowsy Cache Performance Cost
-

instruction & data
12.5%

10.0%

1.5%

5.0%

Run-time increase

2.5%

0.0% -

AV G :::1:§f25?E:;‘:5:5:1:7:3:::5.\:2:3:5'1:1:5:2:3:5:

lucas
mesa b e

vortex

INT 'ff_‘?’.’f:ff"=’?="’:’=5=~===3f-:'<=zss'::;-;;:::;::;
ammp

apsi
equake [

cr afty -5f:?fF:E:EiE::5-'5::i':E'-Ei’Fki?-iiiigiifiﬁziziiiifsiE:E'»':::=':i3::'-:1515>':15i::‘iE!Z=E:E-'E5:5:E:E=31E1:5=:1i::Zi:E1:IZ35:5:52:3:5:5:5;5;’:‘-2:5:5:E:1‘:;E:E:2:5:S:355:§:i:5:3:3:5:5:5:5::;::5:;:555:g;;:g:
gcc
PArser o

bzip2 g

sixtrack i

[Kim04]

Benchmarks

Software Techniques

Compiler-Directed Data Partitioning
s
Multiple D-cache banks, each with sleep mode

Lifetime analysis used to assign commonly idle data
to the same bank

v, ---e—{-e—{-0- - - - +—1 '\ B - - ——— - -
v, co—1 - ---0&——71 - @-&{HI----- — - - - —_—
V, &—{1-@ - - - - - ®* o -@0—{F----- = DPlepy, -=————------------- —_—
v, o—11- -&—1------- o—1 - - —— e - - -
v, - -e—O —1 -&——1- - - - - —
Vs -o—{+ @& ------------ —I[1 | VN ceodfommmmes s sm s s s - |-
T
® Read access — B1 idle time =
_D Y;/,:;t?n?:ﬁ;sls B2 idle time —>

variables

Compiler Optimizations
e

Loop Interchange

O Swap nested loops to access memory in sequential order

/* Before */ /* After */
for (j = 0; j < 100; j = j+1) for (i = 0; i < 5000; i = i+1)
for (i = 0; i < 5000; i = i+1) for (j = 0; j < 100; j = j+1)
x[11[3] = 2 * x[i]1[3]; x[1103] = 2 * x[i]1[3];
Blocking

O Instead of accessing entire rows or columns, subdivide
matrices into blocks

O Requires more memory accesses but improves locality of
accesses

Replacement Policies

Basic Replacement Policies
-

Least Recently Used (LRU) Lsu
Least Frequently Used (LFU) A A B X
Not Recently Used (NRU) LFU

O every block has a bit that is reset to O upon touch
O a block with its bit set to 1 is evicted

O if no block has a 1, make every bit 1

Practical pseudo-LRUL .,

] |

0 4 F |

11 < <: C |
5 $ 71 3 B | 4P-LRU

X |

¥ 0 1 <: Y |

Newer f/{ A | 4MRU
&1) Z |

Common lIssues with Basic Policies
"

Low hit rate due to cache pollution

O streaming (no reuse)
A-B-C-D-E-F-G-H-I-...

O thrashing (distant reuse)
A-B-C-A-B-C-A-B-C-...

A large fraction of the cache is useless — blocks that
have serviced their last hit and are on the slow walk

from MRU to LRU

Basic Cache Policies
e

Insertion
O Where is incoming line placed in replacement liste
Promotion

O When a block is touched, it can be promoted up the
priority list in one of many ways

Victim selection
O Which line to replace for incoming line2 (not necessarily

the tail of the list)

Simple changes to these policies can greatly improve
cache performance for memory-intensive workloads

Zero Reuse Lines (%)

Inefficiency of Basic Policies

About 60% of the cache blocks may be dead on
arrival (DoA)

[Qureshi’07]

Adaptive Insertion Policies

MIP: MRU insertion policy (baseline)
LIP: LRU insertion policy

MRU LRU

aPLb_ dPle g
Traditional LRU places ' in MRU position.
i PlaPlb dPle g
LIP places " in LRU position; with the first touch it becomes MRU.

aPlb Pl PldPlePLfPlog PLi

[Qureshi’07]

Adaptive Insertion Policies
-

LIP does not age older blocks
oA ABC,BC,B,GC,...

LRU MRU

BIP: Bimodal Insertion Policy

O Let € = Bimodal throttle parameter

[Qureshi’07]

Adaptive Insertion Policies

There are two types of workloads: LRU-friendly or
BIP-friendly

DIP: Dynamic Insertion Policy

O Set Dueling

Read the paper for more details.

YES No
Use LRU Use BIP

Follower Sets

monitor = choose = apply
[Qureshi’07] (using a single counter)

(%) Reduction in LZ MPKI

Adaptive Insertion Policies

DIP reduces average MPKI by 21% and requires

less than two bytes storage overhead

60
50+
40
304
20+
10
0
-10
-20)
-30
-40
-50
-60)
=70
-80
-90

(%’
& ¢c‘}/ @o\

[Qureshi’07]

Re-Reference Interval Prediction
-

Goal: high performing scan resistant policy
O DIP is thrash-resistance

O LFU is good for recurring scans

Key idea: insert blocks near the end of the list than
at the very end

Implement with a multi-bit version of NRU

O zero counter on touch, evict block with max counter, else
increment every counter by one

Read the paper for more details.

[Jaleel’10]

Shared Cache Problems
-

A thread’s performance may be significantly
reduced due to an unfair cache sharing
Question: how to control cache sharing?

O Fair cache partitioning [Kim’04]

O Utility based cache partitioning [Qureshi’06]

Utility Based Cache Partitioning

Key idea: give more cache to the application that

benefits more from cache
50

—m— equake

* vpr

s

45 =
«
40 ,

35 . 4

L0 LRU

Misses per 1000 instructions (MPKI)
5 L

| |

r 1 UL
Q IN01L1IYI17314151

I
(o)

[Qureshi’06]

Utility Based Cache Partitioning

Three components:

4 Utility Monitors (UMON) per core
 Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions

[Qureshi’06]

Increase over 4-way (%)

Highly Associative Caches

Last level caches have ~32 ways in multicores

O Increased energy, latency, and area overheads

16-way m 32-way 16-way m 32-way
101%
50 10
t . 8
40 ES 6
o
30 § §~ 4 |
20 £¢ 2|
¢) |
10 Q> l
0 -4
Area Hit Latency Hit Energy rand0 ammp_m

[Sanchez’10]

Recall: Victim Caches
e

Goal: to decrease conflict misses using a small FA
cache

Can we reduce the hardware overheads?

Data

Last Level Cache Victim Cache
4-way SA Cache Small FA cache

The ZCache
e

Goal: design a highly associative cache with a low
number of ways

Improves associativity by increasing number of
replacement candidates

Retains low energy /hit, latency and area of caches
with few ways

Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped
caches)

[Sanchez’10]

The ZCache

When block A is brought in, it could replace one of
four (say) blocks B, C, D, E; but B could be made to
reside in one of three other locations (currently

occupied by F, G, H); and F could be moved to one
of three other locations

Read the paper for more details.

o] /©

Doppelgdnger
-
A Cache for Approximate Computing

Two data blocks are approximately similar (i.e., doppelgdngers)
if replacing the values of one with the other still results in
acceptable application output in the end.

92 | 131 | 183 | 91 | 132 | 186

90 | 131 | 185 | 93 | 133 | 184

35 | 31 | 29 | 43 | 38 | 37

[Miguel’15]

Doppelgdnger

Conventional Cache

address
from L2

tag array data array
L, L ,

data from
memory

[Miguel’15]

Doppelgdnger
-

Approximate Blocks

address 6
from L2
tag array
tag0 | map X
—»| tag6 | map X
tags | mapyY
tag1 | map X
tag2 | map X
tag3 | map X

approximate data array

data C to L2
A

——p1 map X

data block A

map Y

data block B

generate map X from data C

data C from

memory

[Miguel’15]

Doppelgdnger

The map value represents the signature (or likeness) of a block.
Blocks that generate the same map value are approximately

similar.
data block A

A[0] A[1] Aln]

Aggregates values in block: Discretizes hash value:

hash = AVG(A[O], ..., A[n]) All possible

hash values

hash

mapping

map

[Miguel’15]

