LARGE CACHE DESIGN

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY : :
U OF UTAT CS/ECE 7810: Advanced Computer Architecture

Overview
"

Upcoming deadline

O Feb. 3 project group formation

This lecture

0 Gated Vdd/ cache decay, drowsy caches
O Compiler optimizations

O Cache replacement policies

O Cache partitioning

O Highly associative caches

Main Consumers of CPU Resources?
e

A significant portion of the processor die is
occupied by on-chip caches

Example: FX Processors
Main problems in caches

O Power consumption
Power on many transistors
O Reliability

Increased defect rate and errors

T —

™
Q
—
=]
O
g b
T

[i%

[source: AMD]

Leakage Power

dominant source for power consumption as
technology scales down

Pleakage — VXILeakage

100%

80%

60%

40%

20%

Leakage Power/Total Power

0%
1999 2001 2003 2005 2007 2009

Year

[source of data: ITRS]

Gated Vdd

Dynamically resize the cache (number of sets)

biine ~ Vdd_ 4 bitline
< C b
L]
L]
T 1
LC] wordline

virtual Gnd
gated-Vyq
control %
Gnd

[Powell00]

Gated Vdd

Dynamically resize the cache (number of sets)

Sets are disabled by gating the path between Vdd
and ground (" stacking effect’)

bitine ~ Vdd_ - bitline
—] P
other possibilities,
L '# e.g., virtual Vdd
-
i - | wordline (see paper)
ated.V virtual Gnd shared among
I ol iz cells in same row
Gnd (5% total area cost)

[Powell00]

Gated Vdd Microarchitecture

address: tag + Index offset
@ DRI I-CACHE
o : minimum
resizing range size-bound siT’(

size mask: L4
0 K its
. v T
A masked index | v tag data block AR [2
upsize _ downsize g |3
miss count > miss-bound? 4= | = miss count < miss-bound? § v =

mask shift left mask shift right v —

miss
miss-bound —>< compare miss)4— miss counter |« @
count
yes i ?
\ L end of interval?)

threshold above/below which \ number of in_St_FUCtiOHS
cache is upsized/downsized between resizings

[Powell00]

Gated-Vdd |$ Effectiveness

due to additional misses

. \
g ., _! L1 Static Energy s)
% 08 L Extra Dynamic Energy 62)
§ 06 L Average Cache Size (%) B
L
o 04 / i i i |
2
© 02 |
£ 00 i ﬁ i D H
S N\ O Q g\ Q & \\

X & & R q PO & & o

& N Q c\ SRS

OO&Q ((\cb *Q* © \06\

High mis-predication costs!

[Powell00]

Cache Decay
S —

Exploits generational behavior of cache contents

Access Interval M : Miss H : Hit
M H H HH H M
| | | || | | -
| l' > L | | -
‘ Live time? Dead time TIME
NEW Last NEW
Generation Access Generation

100-500 cycles 1,000-500,000 cycles

[Kaxiras01]

Cache Decay
S —

o Fraction of time cache lines that are “dead”

©
810 — — [l [
= 09 _ B g m _
@ (0.8 — — — — e
.2 M [r— M
=07 . A HHHHHHF
2 06 M- A HHHHHHHHHHHHHHF
.=|05-'_'_"—'_' 1 T T mMTTrT MDD MMM DT r
R e e e e e B e e e o o o N
g o3 H4HHHHHHHHHHHHHHH
o2 HHHHAAHHHHHHHHHHHHHHHEHHHH
ceotHHHHHHHHHHHHHHHHHHHHHHHAF
=|00 T T T T TrTrTrTr T TTTTrT T T T T T T T T
S — >< — - e
T 25832 5ES3UeTSET2ITELELEE D
@ > E 52 @25 N 2% 2 2ol g S o S & w©
- S 2% 4 a € © > o‘og_g
-] q,“-"
o ; — w

32KB L1 D-cache
[Kaxiras01]

Cache Decay Implementation

[T T T T]]CLOBAL COUNTER

predication costs!

LOCAL 2-BIT COUNTERS
\‘-\ VALID BIT
[} M CACHE-LINE (DATA + TAG)
WRD i
V] CACHE-LINE (DATA + TAG)
WRD 1 -
ROW
DECODERS
CASCADED v v -
TICK
PULSE
T
High mis- w | M e
g WRD | 50 v Vo
Counter | Power-Off
° |>O

RESET

ALWAYS POWERED

SWITCHED POWER

T/ PowerOff

[Kaxiras01]

Drowsy Caches

T
Gated-Vdd cells lose their state
O Instructions /data must be refetched

O Dirty data must be first written back

By dynamically scaling Vdd, cell is put into o
drowsy state where it retains its value

O Leakage drops superlinearly with reduced Vdd (“DIBL”
effect)

O Cell can be fully restored in a few cycles

O Much lower misprediction cost than gated-Vdd, but
noise susceptibility and less reduction in leakage

Drowsy Cache Organization

drowsy bit

g ¢ J_ drowsy (set)

A

Y

Y

voltage controller

drowsy

Y

JERES

o

power line

SRAMs

word line

5 4

|

3 '.% VDD (1V) —’_LI

g 2 ['T VDDLow (0.3Y) _‘_,J

JIE SolyT

ells

Ny drowsy
N o I wake up (reset)

N)

word line _J
word line gate

drowsy signal

Keeps the contents (no data loss)

[Kim04]

truction B data

ms

100%
0% -

SouI| ASMOIP JO UONIBIg

Drowsy Cache Effectivenes

DAV
dd
WIRIIXIS
esow
seanj
ayenba
1sde
dunne

IN

XJ)I0A
Jasaed
ol
333
fyen

zdizq

[Kim04]

4K cycle drowsy period

Benchmarks

32KB L1 caches

Drowsy Cache Performance Cost
-

instruction & data
12.5%

10.0%

1.5%

5.0%

Run-time increase

2.5%

0.0% -

AV G :::1:§f25?E:;‘:5:5:1:7:3:::5.\:2:3:5'1:1:5:2:3:5:

lucas
mesa b e

vortex

INT 'ff_‘?’.’f:ff"=’?="’:’=5=~===3f-:'<=zss'::;-;;:::;::;
ammp

apsi
equake [

cr afty -5f:?fF:E:EiE::5-'5::i':E'-Ei’Fki?-iiiigiifiﬁziziiiifsiE:E'»':::=':i3::'-:1515>':15i::‘iE!Z=E:E-'E5:5:E:E=31E1:5=:1i::Zi:E1:IZ35:5:52:3:5:5:5;5;’:‘-2:5:5:E:1‘:;E:E:2:5:S:355:§:i:5:3:3:5:5:5:5::;::5:;:555:g;;:g:
gcc
PArser o

bzip2 g

sixtrack i

[Kim04]

Benchmarks

Software Techniques

Compiler-Directed Data Partitioning
s
Multiple D-cache banks, each with sleep mode

Lifetime analysis used to assign commonly idle data
to the same bank

v, ---e—{-e—{-0- - - - +—1 '\ B - - ——— - -
v, co—1 - ---0&——71 - @-&{HI----- — - - - —_—
V, &—{1-@ - - - - - ®* o -@0—{F----- = DPlepy, -=————------------- —_—
v, o—11- -&—1------- o—1 - - —— e - - -
v, - -e—O —1 -&——1- - - - - —
Vs -o—{+ @& ------------ —I[1 | VN ceodfommmmes s sm s s s - |-
T
® Read access — B1 idle time =
_D Y;/,:;t?n?:ﬁ;sls B2 idle time —>

variables

Compiler Optimizations
e

Loop Interchange

O Swap nested loops to access memory in sequential order

/* Before */ /* After */
for (j = 0; j < 100; j = j+1) for (i = 0; i < 5000; i = i+1)
for (i = 0; i < 5000; i = i+1) for (j = 0; j < 100; j = j+1)
x[11[3] = 2 * x[i]1[3]; x[1103] = 2 * x[i]1[3];
Blocking

O Instead of accessing entire rows or columns, subdivide
matrices into blocks

O Requires more memory accesses but improves locality of
accesses

Replacement Policies

Basic Replacement Policies
-

Least Recently Used (LRU) Lsu
Least Frequently Used (LFU) A A B X
Not Recently Used (NRU) LFU

O every block has a bit that is reset to O upon touch
O a block with its bit set to 1 is evicted

O if no block has a 1, make every bit 1

Practical pseudo-LRUL .,

] |

0 4 F |

11 < <: C |
5 $ 71 3 B | 4P-LRU

X |

¥ 0 1 <: Y |

Newer f/{ A | 4MRU
&1) Z |

Common lIssues with Basic Policies
"

Low hit rate due to cache pollution

O streaming (no reuse)
A-B-C-D-E-F-G-H-I-...

O thrashing (distant reuse)
A-B-C-A-B-C-A-B-C-...

A large fraction of the cache is useless — blocks that
have serviced their last hit and are on the slow walk

from MRU to LRU

Basic Cache Policies
e

Insertion
O Where is incoming line placed in replacement liste
Promotion

O When a block is touched, it can be promoted up the
priority list in one of many ways

Victim selection
O Which line to replace for incoming line2 (not necessarily

the tail of the list)

Simple changes to these policies can greatly improve
cache performance for memory-intensive workloads

Zero Reuse Lines (%)

Inefficiency of Basic Policies

About 60% of the cache blocks may be dead on
arrival (DoA)

[Qureshi’07]

Adaptive Insertion Policies

MIP: MRU insertion policy (baseline)
LIP: LRU insertion policy

MRU LRU

aPLb_ dPle g
Traditional LRU places ' in MRU position.
i PlaPlb dPle g
LIP places ‘" in LRU position; with the first touch it becomes MRU.

aPlb Pl PldPlePLfPlog PLi

[Qureshi’07]

Adaptive Insertion Policies
-

LIP does not age older blocks
oA ABC,BC,B,GC,...

LRU MRU

BIP: Bimodal Insertion Policy

O Let € = Bimodal throttle parameter

[Qureshi’07]

Adaptive Insertion Policies

There are two types of workloads: LRU-friendly or
BIP-friendly

DIP: Dynamic Insertion Policy

O Set Dueling

Read the paper for more details.

YES No
Use LRU Use BIP

Follower Sets

monitor = choose = apply
[Qureshi’07] (using a single counter)

(%) Reduction in LZ MPKI

Adaptive Insertion Policies

DIP reduces average MPKI by 21% and requires

less than two bytes storage overhead

60
50+
40
304
20+
10
0
-10
-20)
-30
-40
-50
-60)
=70
-80
-90

(%’
& ¢c‘}/ @o\

[Qureshi’07]

Re-Reference Interval Prediction
-

Goal: high performing scan resistant policy
O DIP is thrash-resistance

O LFU is good for recurring scans

Key idea: insert blocks near the end of the list than
at the very end

Implement with a multi-bit version of NRU

O zero counter on touch, evict block with max counter, else
increment every counter by one

Read the paper for more details.

[Jaleel’10]

Shared Cache Problems
-

A thread’s performance may be significantly
reduced due to an unfair cache sharing
Question: how to control cache sharing?

O Fair cache partitioning [Kim’04]

O Utility based cache partitioning [Qureshi’06]

Utility Based Cache Partitioning

Key idea: give more cache to the application that

benefits more from cache
50

—m— equake

* vpr

s

45 =
«
40 ,

35 . 4

L0 LRU

Misses per 1000 instructions (MPKI)
5 L

| |

r 1 UL
Q IN01L1IYI17314151

I
(o)

[Qureshi’06]

Utility Based Cache Partitioning

Three components:

4 Utility Monitors (UMON) per core
 Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions

[Qureshi’06]

Increase over 4-way (%)

Highly Associative Caches

Last level caches have ~32 ways in multicores

O Increased energy, latency, and area overheads

16-way m 32-way 16-way m 32-way
101%
50 10
t . 8
40 ES 6
o
30 § §~ 4 |
20 £¢ 2|
¢) |
10 Q> l
0 -4
Area Hit Latency Hit Energy rand0 ammp_m

[Sanchez’10]

Recall: Victim Caches
e

Goal: to decrease conflict misses using a small FA
cache

Can we reduce the hardware overheads?

Data

Last Level Cache Victim Cache
4-way SA Cache Small FA cache

The ZCache
e

Goal: design a highly associative cache with a low
number of ways

Improves associativity by increasing number of
replacement candidates

Retains low energy /hit, latency and area of caches
with few ways

Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped
caches)

[Sanchez’10]

The ZCache

When block A is brought in, it could replace one of
four (say) blocks B, C, D, E; but B could be made to
reside in one of three other locations (currently

occupied by F, G, H); and F could be moved to one
of three other locations

Read the paper for more details.

o] /©

