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Overview
"

Upcoming deadline

O Feb. 3 project group formation

This lecture

0 Gated Vdd/ cache decay, drowsy caches
O Compiler optimizations

O Cache replacement policies

O Cache partitioning

O Highly associative caches



Main Consumers of CPU Resources?
e

A significant portion of the processor die is
occupied by on-chip caches

Example: FX Processors
Main problems in caches

O Power consumption
Power on many transistors
O Reliability

Increased defect rate and errors
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[source: AMD]



Leakage Power

dominant source for power consumption as
technology scales down
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Gated Vdd

Dynamically resize the cache (number of sets)
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Gated Vdd

Dynamically resize the cache (number of sets)

Sets are disabled by gating the path between Vdd
and ground (" stacking effect’)

bitine ~ Vdd_ - bitline
— ] P
other possibilities,
L '# e.g., virtual Vdd
-
i - | wordline (see paper)
ated.V virtual Gnd shared among
I ol iz cells in same row
Gnd (5% total area cost)
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Gated Vdd Microarchitecture
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Gated-Vdd |$ Effectiveness

due to additional misses
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High mis-predication costs!
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Cache Decay
S —

Exploits generational behavior of cache contents

Access Interval M : Miss H : Hit
M H H HH H M
| | | || | | -
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‘ Live time? Dead time TIME
NEW Last NEW
Generation Access Generation

100-500 cycles 1,000-500,000 cycles

[Kaxiras01]



Cache Decay
S —

o Fraction of time cache lines that are “dead”
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Cache Decay Implementation
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Drowsy Caches

T
Gated-Vdd cells lose their state
O Instructions /data must be refetched

O Dirty data must be first written back

By dynamically scaling Vdd, cell is put into o
drowsy state where it retains its value

O Leakage drops superlinearly with reduced Vdd (“DIBL”
effect)

O Cell can be fully restored in a few cycles

O Much lower misprediction cost than gated-Vdd, but
noise susceptibility and less reduction in leakage



Drowsy Cache Organization
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4K cycle drowsy period

Benchmarks

32KB L1 caches



Drowsy Cache Performance Cost
-
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Software Techniques



Compiler-Directed Data Partitioning
s
Multiple D-cache banks, each with sleep mode

Lifetime analysis used to assign commonly idle data
to the same bank
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Compiler Optimizations
e

Loop Interchange

O Swap nested loops to access memory in sequential order

/* Before */ /* After */
for (j = 0; j < 100; j = j+1) for (i = 0; i < 5000; i = i+1)
for (i = 0; i < 5000; i = i+1) for (j = 0; j < 100; j = j+1)
x[11[3] = 2 * x[i]1[3]; x[1103] = 2 * x[i]1[3];
Blocking

O Instead of accessing entire rows or columns, subdivide
matrices into blocks

O Requires more memory accesses but improves locality of
accesses



Replacement Policies



Basic Replacement Policies
-

Least Recently Used (LRU) Lsu
Least Frequently Used (LFU) A A B X
Not Recently Used (NRU) LFU

O every block has a bit that is reset to O upon touch
O a block with its bit set to 1 is evicted

O if no block has a 1, make every bit 1

Practical pseudo-LRUL .,
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Common lIssues with Basic Policies
"

Low hit rate due to cache pollution

O streaming (no reuse)
A-B-C-D-E-F-G-H-I-...

O thrashing (distant reuse)
A-B-C-A-B-C-A-B-C-...

A large fraction of the cache is useless — blocks that
have serviced their last hit and are on the slow walk

from MRU to LRU



Basic Cache Policies
e

Insertion
O Where is incoming line placed in replacement liste
Promotion

O When a block is touched, it can be promoted up the
priority list in one of many ways

Victim selection
O Which line to replace for incoming line2 (not necessarily

the tail of the list)

Simple changes to these policies can greatly improve
cache performance for memory-intensive workloads



Zero Reuse Lines (%)

Inefficiency of Basic Policies

About 60% of the cache blocks may be dead on
arrival (DoA)

[Qureshi’07]



Adaptive Insertion Policies

MIP: MRU insertion policy (baseline)
LIP: LRU insertion policy

MRU LRU

aPLb_ dPle g
Traditional LRU places ' in MRU position.
i PlaPlb dPle g
LIP places ‘" in LRU position; with the first touch it becomes MRU.

aPlb Pl PldPlePLfPlog PLi

[Qureshi’07]



Adaptive Insertion Policies
-

LIP does not age older blocks
oA ABC,BC,B,GC,...

LRU MRU

BIP: Bimodal Insertion Policy

O Let € = Bimodal throttle parameter

[Qureshi’07]



Adaptive Insertion Policies

There are two types of workloads: LRU-friendly or
BIP-friendly

DIP: Dynamic Insertion Policy

O Set Dueling

Read the paper for more details.

YES No
Use LRU Use BIP

Follower Sets

monitor = choose = apply
[Qureshi’07] (using a single counter)



(%) Reduction in LZ MPKI

Adaptive Insertion Policies

DIP reduces average MPKI by 21% and requires

less than two bytes storage overhead
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Re-Reference Interval Prediction
-

Goal: high performing scan resistant policy
O DIP is thrash-resistance

O LFU is good for recurring scans

Key idea: insert blocks near the end of the list than
at the very end

Implement with a multi-bit version of NRU

O zero counter on touch, evict block with max counter, else
increment every counter by one

Read the paper for more details.

[Jaleel’10]



Shared Cache Problems
-

A thread’s performance may be significantly
reduced due to an unfair cache sharing
Question: how to control cache sharing?

O Fair cache partitioning [Kim’04]

O Utility based cache partitioning [Qureshi’06]




Utility Based Cache Partitioning

Key idea: give more cache to the application that

benefits more from cache
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Utility Based Cache Partitioning

Three components:

4 Utility Monitors (UMON) per core
 Partitioning Algorithm (PA)

Main Memory

1 Replacement support to enforce partitions

[Qureshi’06]



Increase over 4-way (%)

Highly Associative Caches

Last level caches have ~32 ways in multicores

O Increased energy, latency, and area overheads
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Recall: Victim Caches
e

Goal: to decrease conflict misses using a small FA
cache

Can we reduce the hardware overheads?

Data

Last Level Cache Victim Cache
4-way SA Cache Small FA cache




The ZCache
e

Goal: design a highly associative cache with a low
number of ways

Improves associativity by increasing number of
replacement candidates

Retains low energy /hit, latency and area of caches
with few ways

Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped
caches)

[Sanchez’10]



The ZCache

When block A is brought in, it could replace one of
four (say) blocks B, C, D, E; but B could be made to
reside in one of three other locations (currently

occupied by F, G, H); and F could be moved to one
of three other locations

Read the paper for more details.
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