
CACHE POWER CONSUMPTION

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Upcoming deadline
¤ Feb. 3rd: project group formation

¨ This lecture
¤ Cache power consumption
¤ Cache banking
¤ Way prediction
¤ Resizable caches
¤ Gated Vdd/ cache decay, drowsy caches



Main Consumers of CPU Resources?

¨ A significant portion of the processor die is 
occupied by on-chip caches

¨ Main problems in caches
¤ Power consumption

n Power on many transistors

¤ Reliability
n Increased defect rate and errors

[source: AMD]

Example: FX Processors



Recall: CPU Power Consumption

¨ Major power consumption issues

Peak Power/Power Density Average Power

q Heat
o Packaging, cooling, 

component spacing
q Switching noise

o Decoupling capacitors

q Battery life
o Bulkier battery

q Utility costs
o Probability, cannot run 

your business!

Caches generate little heat
(low activity factor)

Caches consume high
average power (~1/3)



Cache Power Management

¨ Circuit techniques
¤ Transistor sizing, multi-Vt, low-swing bit-lines, etc.

¨ Microarchitecture techniques
¤ Static techniques

n banking, phased tag/data access, way prediction

¤ Dynamic techniques
n gated-Vdd, cache decay, drowsy caches

¨ Compiler techniques
¤ Data partitioning to enable sleep mode 



Recall: Cache Lookup

¨ Byte offset: to select 
the requested byte

¨ Tag: to maintain the 
address

¨ Valid flag (v): 
whether content is 
meaningful

¨ Data and tag are 
always accessed

hit

data

v
0
1
2

…

1021
1022
1023

tag index byte

=



Cache Architecture

¨ Physical cache structure

[CACTI 1.0]



Cache Banking

¨ Divide cache into multiple identical arrays
¤ Static power: unused arrays may be turned off
¤ Dynamic power: only the target arrays is accessed

[Source: CACTI]



Basic Set Associative Cache

tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 4D



Phased N-way Cache 

tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 1D
But access time increases



Way-prediction N-way Cache

tag set offset

Mux 4:1 To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Way-prediction

=?

To CPU

Correct prediction: 1T + 1D
Predict instead of sequential tag access [Powell02]



Way Prediction Summary

¨ To improve hit time, predict the way to pre-set Mux
¤ Mis-prediction gives longer hit time
¤ Prediction accuracy

n > 90% for two-way
n > 80% for four-way
n I-cache has better accuracy than D-cache

¤ First used on MIPS R10000 in mid-90s
¤ Used on ARM Cortex-A8

¨ Extend to predict block as well
¤ “Way selection”
¤ Increases mis-prediction penalty



Cache Size

¨ Energy dissipation of on-chip cache and off-chip 
memory

[Zhang04]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B

RE
LA

TI
V

E 
EN

ER
G

Y

CACHE SIZE

Cache Memory Total

core

Cache

Memory

Can we dynamically resize cache? Ways, sets, or blocks?



Resizable Caches

¨ Resizable caches turn off portions of the cache that 
are not heavily used by the running program

[Albonesi99] 



Leakage Power

¨ dominant source for power consumption as 
technology scales down

0%

20%

40%

60%

80%

100%

1999 2001 2003 2005 2007 2009

Year

Le
ak

ag
e 

Po
w

er
/T

ot
al

 P
ow

er

[source of data: ITRS]

𝑃!"#$#%" = 𝑉×𝐼&"#$#%"



Dynamic Techniques for Leakage

¨ Three example microarchitectural approaches
¤ Gated-Vdd

n Gate the supply-to-ground path 

¤ Cache decay
n Same gating mechanism but different control policy

¤ Drowsy caches
n Reduce the Vdd in order to retain cell state



Gated Vdd

¨ Dynamically resize the cache (number of sets)
¨ Sets are disabled by gating the path between Vdd 

and ground (“stacking effect”)

shared among 
cells in same row
(5% total area cost)

other possibilities, 
e.g., virtual Vdd
(see paper)

[Powell00] 



Gated Vdd Microarchitecture

number of instructions
between resizings

threshold above/below which 
cache is upsized/downsized

[Powell00] 



Gated-Vdd I$ Effectiveness

due to additional misses

High mis-predication costs!

[Powell00] 



Cache Decay

¨ Exploits generational behavior of cache contents

100-500 cycles 1,000-500,000 cycles

[Kaxiras01] 



Cache Decay

32KB L1 D-cache

¨ Fraction of time cache lines that are “dead”

[Kaxiras01] 



Cache Decay Implementation

[Kaxiras01] 

High mis-
predication costs!



Drowsy Caches

¨ Gated-Vdd cells lose their state
¤ Instructions/data must be refetched
¤ Dirty data must be first written back

¨ By dynamically scaling Vdd, cell is put into a 
drowsy state where it retains its value
¤ Leakage drops superlinearly with reduced Vdd (“DIBL”

effect)
¤ Cell can be fully restored in a few cycles
¤ Much lower misprediction cost than gated-Vdd, but 

noise susceptibility and less reduction in leakage



Drowsy Cache Organization

[Kim04] 

VDD (1V)

VDDLow (0.3V)

drowsy (set)

drowsy signal

SRAMs

ro
w

 d
ec

od
er

w
or

d 
lin

e 
dr

iv
er

voltage controller

word line

word line

power line

word line gate

wake up (reset)

drowsy bit

drowsy

drowsy

Keeps the contents (no data loss)



Drowsy Cache Effectivenes

32KB L1 caches 4K cycle drowsy period [Kim04] 



Drowsy Cache Performance Cost

[Kim04] 


