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Overview

¨ Upcoming deadline
¤ Feb. 3rd: project group formation

¨ This lecture
¤ Cache power consumption
¤ Cache banking
¤ Way prediction
¤ Resizable caches
¤ Gated Vdd/ cache decay, drowsy caches



Main Consumers of CPU Resources?

¨ A significant portion of the processor die is 
occupied by on-chip caches

¨ Main problems in caches
¤ Power consumption

n Power on many transistors

¤ Reliability
n Increased defect rate and errors

[source: AMD]

Example: FX Processors



Recall: CPU Power Consumption

¨ Major power consumption issues

Peak Power/Power Density Average Power

q Heat
o Packaging, cooling, 

component spacing
q Switching noise

o Decoupling capacitors

q Battery life
o Bulkier battery

q Utility costs
o Probability, cannot run 

your business!

Caches generate little heat
(low activity factor)

Caches consume high
average power (~1/3)



Cache Power Management

¨ Circuit techniques
¤ Transistor sizing, multi-Vt, low-swing bit-lines, etc.

¨ Microarchitecture techniques
¤ Static techniques

n banking, phased tag/data access, way prediction

¤ Dynamic techniques
n gated-Vdd, cache decay, drowsy caches

¨ Compiler techniques
¤ Data partitioning to enable sleep mode 



Recall: Cache Lookup

¨ Byte offset: to select 
the requested byte

¨ Tag: to maintain the 
address

¨ Valid flag (v): 
whether content is 
meaningful

¨ Data and tag are 
always accessed
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Cache Architecture

¨ Physical cache structure

[CACTI 1.0]



Cache Banking

¨ Divide cache into multiple identical arrays
¤ Static power: unused arrays may be turned off
¤ Dynamic power: only the target arrays is accessed

[Source: CACTI]



Basic Set Associative Cache

tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 4D



Phased N-way Cache 

tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 1D
But access time increases



Way-prediction N-way Cache

tag set offset

Mux 4:1 To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Way-prediction

=?

To CPU

Correct prediction: 1T + 1D
Predict instead of sequential tag access [Powell02]



Way Prediction Summary

¨ To improve hit time, predict the way to pre-set Mux
¤ Mis-prediction gives longer hit time
¤ Prediction accuracy

n > 90% for two-way
n > 80% for four-way
n I-cache has better accuracy than D-cache

¤ First used on MIPS R10000 in mid-90s
¤ Used on ARM Cortex-A8

¨ Extend to predict block as well
¤ “Way selection”
¤ Increases mis-prediction penalty



Cache Size

¨ Energy dissipation of on-chip cache and off-chip 
memory

[Zhang04]
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Can we dynamically resize cache? Ways, sets, or blocks?



Resizable Caches

¨ Resizable caches turn off portions of the cache that 
are not heavily used by the running program

[Albonesi99] 



Leakage Power

¨ dominant source for power consumption as 
technology scales down
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Dynamic Techniques for Leakage

¨ Three example microarchitectural approaches
¤ Gated-Vdd

n Gate the supply-to-ground path 

¤ Cache decay
n Same gating mechanism but different control policy

¤ Drowsy caches
n Reduce the Vdd in order to retain cell state



Gated Vdd

¨ Dynamically resize the cache (number of sets)
¨ Sets are disabled by gating the path between Vdd 

and ground (“stacking effect”)

shared among 
cells in same row
(5% total area cost)

other possibilities, 
e.g., virtual Vdd
(see paper)

[Powell00] 



Gated Vdd Microarchitecture

number of instructions
between resizings

threshold above/below which 
cache is upsized/downsized

[Powell00] 



Gated-Vdd I$ Effectiveness

due to additional misses

High mis-predication costs!

[Powell00] 



Cache Decay

¨ Exploits generational behavior of cache contents

100-500 cycles 1,000-500,000 cycles

[Kaxiras01] 



Cache Decay

32KB L1 D-cache

¨ Fraction of time cache lines that are “dead”

[Kaxiras01] 



Cache Decay Implementation

[Kaxiras01] 

High mis-
predication costs!



Drowsy Caches

¨ Gated-Vdd cells lose their state
¤ Instructions/data must be refetched
¤ Dirty data must be first written back

¨ By dynamically scaling Vdd, cell is put into a 
drowsy state where it retains its value
¤ Leakage drops superlinearly with reduced Vdd (“DIBL”

effect)
¤ Cell can be fully restored in a few cycles
¤ Much lower misprediction cost than gated-Vdd, but 

noise susceptibility and less reduction in leakage



Drowsy Cache Organization

[Kim04] 
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Drowsy Cache Effectivenes

32KB L1 caches 4K cycle drowsy period [Kim04] 



Drowsy Cache Performance Cost

[Kim04] 


