CACHE POWER CONSUMPTION

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Upcoming deadline
 - Feb. 3rd: project group formation
- □ This lecture
 - Cache power consumption
 - Cache banking
 - Way prediction
 - Resizable caches
 - Gated Vdd/ cache decay, drowsy caches

Main Consumers of CPU Resources?

 A significant portion of the processor die is occupied by on-chip caches

- Main problems in caches
 - Power consumption
 - Power on many transistors
 - Reliability
 - Increased defect rate and errors

Example: FX Processors

[source: AMD]

Recall: CPU Power Consumption

■ Major power consumption issues

Peak Power/Power Density

- □ Heat
 - Packaging, cooling, component spacing
- ☐ Switching noise
 - Decoupling capacitors

Caches generate little heat (low activity factor)

Average Power

- Battery life
 - Bulkier battery
- ☐ Utility costs
 - Probability, cannot run your business!

Caches consume high average power (~1/3)

Cache Power Management

- Circuit techniques
 - Transistor sizing, multi-Vt, low-swing bit-lines, etc.
- Microarchitecture techniques
 - Static techniques
 - banking, phased tag/data access, way prediction
 - Dynamic techniques
 - gated-Vdd, cache decay, drowsy caches
- Compiler techniques
 - Data partitioning to enable sleep mode

Recall: Cache Lookup

- Byte offset: to select the requested byte
- □ Tag: to maintain the address
- Valid flag (v):whether content ismeaningful
- Data and tag are always accessed

Cache Architecture

□ Physical cache structure

[CACTI 1.0]

Cache Banking

- Divide cache into multiple identical arrays
 - Static power: unused arrays may be turned off
 - Dynamic power: only the target arrays is accessed

Basic Set Associative Cache

Phased N-way Cache

Power per access: 4T + 1D But access time increases

Way-prediction N-way Cache

Correct prediction: 1T + 1D

Predict instead of sequential tag access

[Powell02]

Way Prediction Summary

- □ To improve hit time, predict the way to pre-set Mux
 - Mis-prediction gives longer hit time
 - Prediction accuracy
 - > 90% for two-way
 - \sim > 80% for four-way
 - I-cache has better accuracy than D-cache
 - □ First used on MIPS R10000 in mid-90s
 - Used on ARM Cortex-A8
- Extend to predict block as well
 - "Way selection"
 - Increases mis-prediction penalty

Cache Size

Energy dissipation of on-chip cache and off-chip memory

Can we dynamically resize cache? Ways, sets, or blocks?

Resizable Caches

 Resizable caches turn off portions of the cache that are not heavily used by the running program

[Albonesi99]

Leakage Power

 dominant source for power consumption as technology scales down

$$P_{leakage} = V \times I_{Leakage}$$

Dynamic Techniques for Leakage

- Three example microarchitectural approaches
 - Gated-Vdd
 - Gate the supply-to-ground path
 - Cache decay
 - Same gating mechanism but different control policy
 - Drowsy caches
 - Reduce the Vdd in order to retain cell state

Gated Vdd

- Dynamically resize the cache (number of sets)
- Sets are disabled by gating the path between Vdd and ground ("stacking effect")

[Powell00]

Gated Vdd Microarchitecture

Gated-Vdd I\$ Effectiveness

due to additional misses

High mis-predication costs!

Cache Decay

Exploits generational behavior of cache contents

Cache Decay

Fraction of time cache lines that are "dead"

32KB L1 D-cache [Kaxiras01]

Cache Decay Implementation

High mispredication costs!

Drowsy Caches

- Gated-Vdd cells lose their state
 - Instructions/data must be refetched
 - Dirty data must be first written back

- By dynamically scaling Vdd, cell is put into a drowsy state where it retains its value
 - Leakage drops superlinearly with reduced Vdd ("DIBL" effect)
 - Cell can be fully restored in a few cycles
 - Much lower misprediction cost than gated-Vdd, but noise susceptibility and less reduction in leakage

Drowsy Cache Organization

Keeps the contents (no data loss)

Drowsy Cache Effectivenes

32KB L1 caches

4K cycle drowsy period

[Kim04]

Drowsy Cache Performance Cost

