DATA /THREAD LEVEL PARALLELISM

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Overview
"

Announcement
O Tonight: Homework 5 is due

O Reminder: we will drop one of your HW with the least
grade

This lecture

O Data level parallelism
Graphics processing unit

O Thread level parallelism

Flynn’s Taxonomy
-

Data vs. instruction streams

Instruction Stream

S
o
(]
=
(73]
©
b
©
(]

Flynn’s Taxonomy
-

Data vs. instruction streams

Instruction Stream

Single

Single-Instruction,
Single Single Data (SISD)

uniprocessors

S
o
(]
=
(73]
©
b
©
(]

Flynn’s Taxonomy
S

Data vs. instruction streams

Instruction Stream

Single

Single-Instruction,
Single Single Data (SISD)

uniprocessors

S
o
(]
=
(73]
©
b
©
(]

Single-Instruction,
Multiple Multiple Data (SIMD)

vector processors

Flynn’s Taxonomy
-

Data vs. instruction streams

Instruction Stream

Single Multiple

——

Single-Instruction, Multiple-Instruction,

Single Single Data (SISD) Single Data (MISD)
g uniprocessors systolic arrays
£
(/9]
=
© i . Multiple-Instruction,
o Single-Instruction, Multiple Data

Multiple ltiple Data (SIMD

p Multiple Data (S) (MIMD)

vector processors :
multicores

Graphics Processing Unit
S —

Initially developed as graphics accelerators

O one of the densest compute engines available now

Many efforts to run non-graphics workloads on GPUs

O general-purpose GPUs (GPGPUs)

C/C++ based programming platforms

O CUDA from NVidia and OpenCL from an industry consortium
A heterogeneous system

O a regular host CPU
O a GPU that handles CUDA (may be on the same CPU chip)

Graphics Processing Unit

Simple in-order pipelines that rely on thread-level
parallelism to hide long latencies

Many registers (~ 1K) per in-order pipeline (lane) to
support many active warps

Cache

DRAM

Control

Why GPU Computing?

Tesla 20-series Tesla 20-series

800

600
Tesla 20-series

400

Nehalem

200 3GHz

2003 2004 2005 2006 2007 2008 2009 2010 2003 2004 2005 2006 2007 2008 2009 2010

GFlops/sec GBytes/sec

~#- Single Precision: NVIDIAGPU ~*" Single Precision: x86 CPU =#= NVIDIAGPU ~*" X86 CPU
=&~ Double Precision: NVIDIA GPU Double Precision: x86 CPU ECC off

Source: NVIDIA

The GPU Architecture

SIMT = single instruction, multiple threads
O GPU has many SIMT cores

Application = many thread blocks (1 per SIMT core)
Thread block = many warps (1 warp per SIMT core)
Warp =2 many in-order pipelines (SIMD lanes)

SIMT Core

SIMT Core

SIMT Core

Mem Partition

Mem Partition

SliVID|Lanes

Mem Partition

GDDRS5
Controller

GPU Computing

GPU as an accelerator in scientific applications

GPU Computing

Low latency or high throughput?

100s of ALUs

100s of ALUs

CPU GPU

Optimized for low-latency * Optimized for data-parallel,
access to cached data sets throughput computation

Control logic for out-of-order * Architecture tolerant of
and speculative execution memory latency

More transistors dedicated to
computation

GPU Computing

Low latency or high throughput

Application Code

— { } Rest of Sequential
Compute-Intensive Functions CPU Code I
GPU yse GPU to Parallelize L

EEEEEEEE EEEEEEEE
EEEEEEES SEEEEEEE
EEEEEEEE EEEEEEEE
---------------- ,
ST S T
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE

CUDA Programming Model

Step 1: substitute library calls with equivalent CUDA
library calls

O saxpy (...) 2 cublasSaxpy (...)
single precision alpha x plus y (z = ax + y)
Step 2: manage data locality
O cudaMalloc(), cudaMemcpy(), etc.
Step 3: transfer data between CPU and GPU
O get and set functions

rebuild and link the CUDA-accelerated library

O nvcc myobj.o —I cublas

Example: SAXPY Code

.
int N =1 << 20;

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]
saxpy(N, 2.0, x, 1, y, 1);

Example: CUDA Lib Calls

-
int N =1 << 20;

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

Example: Initialize CUDA Lib

.
int N =1 << 20;

cublasinit();

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasShutdown();

Example: Allocate Memory
-

int N =1 << 20;

cublasinit();
cublasAlloc(N, sizeof(float), (void*™*)&d_x);
cublasAlloc(N, sizeof(float), (void*)&d_y);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasFree(d_x);
cublasFree(d_y);
cublasShutdown();

Example: Transfer Data

-
intN =1 << 20;

cublasinit();
cublasAlloc(N, sizeof(float), (void™*)&d_x);
cublasAlloc(N, sizeof(float), (void™*)&d_y);

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, Y, 1);
cublasFree(d_x);

cublasFree(d_y);
cublasShutdown();

Compiling CUDA

Call nvece

Parallel Threads eXecution
(PTX)
O Virtual machine and ISA

Two stage
ol.PTX

O 2. device-specific binary
object

G80 | ... ||GPU

Target code

Memory Hierarchy
e

Throughput-oriented main memory

O Graphics DDR (GDDR)
Wide channels: 256 bit
Lower clock rate than DDR [Shared J[L1 cache][Reqd °n|)’J

O 1.5MB shared L2 memory data cache

O 48KB read-only data cache

Compiler controlled

O Wide buses

Thread Level Parallelism

Flynn’s Taxonomy

Forms of computer architectures

Instruction Stream

Single Multiple
Single-Instruction, Multiple-Instruction,
Single Single Data (SISD) Single Data (MISD)
uniprocessors systolic arrays

£
©
)
o
(7p)
©
wid
®
o

Multiple-Instruction,

Single-Instruction, Multiple Data
ulti

Multiple Multiple Data (SIMD)

vector processors

(MIMD)

multiprocessors

Basics of Threads
e

Thread is a single sequential flow of control within a
program including instructions and state

O Register state is called thread context

A program may be single- or multi-threaded

O Single-threaded program can handle one task at any
time

Multitasking is performed by modern operating

systems to load the context of a new thread while

the old thread’s context is written back to memory

Thread Level Parallelism (TLP)

-
Users prefer to execute multiple applications
O Piping applications in Linux
gunzip -c foo.gz | grep bar | perl some-script.pl
O Your favorite applications while working in office
Music player, web browser, terminal, efc.
Many applications are amenable to parallelism

O Explicitly multi-threaded programs
Pthreaded applications

O Parallel languages and libraries
Java, C#, OpenMP

