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Recall: Out-of-Order Execution
e

Memory accesses require long time to complete.
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Loads and Stores

Imagine multiple load/store in IQ.
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Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

Instructions in the issue queue Memory

Load R1<Mem[R2]
Load = R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load R7<Mem[R8+16]
Store | R9>Mem[R10]
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Memory Data Dependence

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check
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Memory Data Dependence

Can we continue executing loads/stores out-of-
order?
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Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load R1€Mem[R2] <— Possible WAR

Load R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load = R7€¢Mem[R8+16] €
Store | R9>Mem[R10]

Possi RAW
Possible WAW

Does renaming help?



Load-Store Queue
e

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards
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Load-Store Queue

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards

l_ P13

Load

P34

Oxbeef00

A




Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61
Store | P26
Load | P11
Load | P29 | 0x12345
Store | P30 | Ox11111
Load | P15 | 0x22222
load | P10 | Ox11111

Memory



Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61 Due to RAW hazards, only those
Store | P26 loads that are not following any

unknown stores can be issued.
Load | P11
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Memory



Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61 Due to RAW hazards, only those
Store | P26 loads that are not following any

unknown stores can be issued.

Load | P11
Can we bypass memory?

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Memory



Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 2. Which store instructions can be issued?
Load | P61
Store | P26
Load | P11
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Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 2. Which store instructions can be issued?

Load | P61 Due to WAW and WAR hazards, only

Store | P26 when there is no older instructions.
(why?)

Load | P11

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Memory



Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 Which instructions can be issued?
Load | P61
Store | P26 | 0x22222
Load | P11
Load | P29 | 0x12345
Store | P30 | Ox11111
Load | P15 | 0x22222
load | P10 | Ox11111

Memory



Memory Dependence Prediction
S

Can we predict memory dependence?

Load | P34 | 0x12345 Issue/execute load instructions even if they
Load | P61 are following unresolved stores
Store | P26

What if the prediction was not correct?
Load | P11

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111




Out-of-order Pipeline with LSQ
S —

LSQ is an extension to IQ
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Memory Hierarchy

“Ideally one would desire an indefinitely large memory capacity
such that any particular [...] word would be immediately
available [...] We are [...] forced to recognize the possibility of
constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.”
-- Burks, Goldstine, and von Neumann, 1946
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The Memory Wall

0000
Processor-memory performance gap increased over
50% per year

O Processor performance historically improved ~60% per
year

O Main memory access time improves ~5% per year
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Modern Memory Hierarchy
e

Trade-off among memory speed, capacity, and cost

small, fast, expensive Register

Cache I—_I

. big, slow, inexpensive

SSD

Disk



Memory Technology
S —

Random access memory (RAM) technology

O access time same for all locations (not so true anymore)

O Static RAM (SRAM)

typically used for caches

6T /bit; fast but — low density, high power, expensive

O Dynamic RAM (DRAM)

typically used for main memory

1T/bit; inexpensive, high density, low power — but slow



RAM Cells

e
6T SRAM cell bifline bitline

O internal feedback wordline

maintains data while

power on L
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1T-1C DRAM cell

O needs refresh regularly to
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Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors

3-3.5 GHz
~$1000 2014)

Source: Intel Core i7



Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors
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3-3.5 GHz
~$1000 2014)
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Source: Intel Core i7



Cache Hierarchy

Example three-level cache organization

LT ™
| —
32 KB =
1 cycle L3
Zaoke
cycies 30 cycles
Off-chip
8 GB Memory

~300 cycles



Cache Hierarchy

Example three-level cache organization
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32 KB L2
1 cycle L3
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Ffp 256 KB 4 MB
inst. data 10 cycles 30 cycles
Off-chip
8 GB Memory

~300



Cache Hierarchy

Example three-level cache organization

LT >
32 KB L2 —
1 cycle L3
Application 256 KB
inst. data 10 cycles 4 MB
30 cycles
1. Where to put the application?
2. Who decides? ]
a. software (scratchpad) Off-chip
8 GB Memory

b. hardware (caches)

~300 cyc/es



