
OUT-OF-ORDER LOADS/STORES

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Recall: Out-of-Order Execution

¨ Memory accesses require long time to complete.

R1: V1
R2: ??
R3: ??

…

R10->T1
R2->T2
R3->T3
R5->T4

T5, …,
T0

ld,R10+,R2+,R3… +,R5

ALU

T1=Mem[10]

T0T1T2T3T4

T1,V10

Loads and Stores

¨ Imagine multiple load/store in IQ.

Inst.
Memory

Inst.
Decoder

Issue Queue (IQ)

FU-1

Retire
RAT

Fetch Decode Issue Execute Complete Commit

FU-n

Rename

Branch
Predictor

Re-Order Buffer (ROB)
…

Branch

Data Memory

Front
RAT

Free
Register

List

Physical
Register

File

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory
Possible WAR

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Possible RAW

Possible WAR

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Possible RAW
Possible WAW

Possible WAR

Memory Data Dependence

¨ Can we continue executing loads/stores out-of-
order?
¤ Effective address is required for dependence check

Instructions in the issue queue

R1ßMem[R2]
R3ßMem[R4+8]
R5àMem[R6]
R7ßMem[R8+16]
R9àMem[R10]

Load
Load
Store
Load
Store

Memory

Possible RAW
Possible WAW

Possible WAR

Does renaming help?

Load-Store Queue

¨ Dedicated queue only for load/store instructions
¤ Check availability of operands every cycle

¨ Two steps for load/store instructions
¤ Compute the effective address when register is

available
¤ Send the request to memory if there is no memory

hazards

Load P34 P13 + 8 ALU

Load-Store Queue

¨ Dedicated queue only for load/store instructions
¤ Check availability of operands every cycle

¨ Two steps for load/store instructions
¤ Compute the effective address when register is

available
¤ Send the request to memory if there is no memory

hazards

Load P34 P13 + 8 ALU

P13

Load-Store Queue

¨ Dedicated queue only for load/store instructions
¤ Check availability of operands every cycle

¨ Two steps for load/store instructions
¤ Compute the effective address when register is

available
¤ Send the request to memory if there is no memory

hazards

Load P34 P13 + 8 ALU

P13

Load-Store Queue

¨ Dedicated queue only for load/store instructions
¤ Check availability of operands every cycle

¨ Two steps for load/store instructions
¤ Compute the effective address when register is

available
¤ Send the request to memory if there is no memory

hazards

Load P34 P13 + 8 ALU

P13

0xbeef00

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

1. Which load instructions can be issued?

Memory

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

1. Which load instructions can be issued?
Due to RAW hazards, only those
loads that are not following any
unknown stores can be issued.

Memory

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

1. Which load instructions can be issued?
Due to RAW hazards, only those
loads that are not following any
unknown stores can be issued.
Can we bypass memory?

Memory

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

2. Which store instructions can be issued?

Memory

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

2. Which store instructions can be issued?
Due to WAW and WAR hazards, only
when there is no older instructions.
(why?)

Memory

Memory Dependence Check

¨ Checking for RAW, WAR, and WAW hazards

Load P34 0x12345

Load P61

Store P26 0x22222

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

Which instructions can be issued?

Memory

Memory Dependence Prediction

¨ Can we predict memory dependence?

Load P34 0x12345

Load P61

Store P26

Load P11

Load P29 0x12345

Store P30 0x11111

Load P15 0x22222

Load P10 0x11111

Issue/execute load instructions even if they
are following unresolved stores

What if the prediction was not correct?

Out-of-order Pipeline with LSQ

¨ LSQ is an extension to IQ

Inst.
Memory

Inst.
Decoder

Issue Queue (IQ)

FU-1

Retire
RAT

Fetch Decode Issue Execute Complete Commit

FU-n

Rename

Branch
Predictor

Re-Order Buffer (ROB)
…

Branch

Data Memory

Front
RAT

Free
Register

List

Physical
Register

File

LSQ

Memory Hierarchy

“Ideally one would desire an indefinitely large memory capacity
such that any particular [...] word would be immediately
available [...] We are [...] forced to recognize the possibility of
constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.”

-- Burks, Goldstine, and von Neumann, 1946

Level 1

Core

Level 2

Level 3

Greater capacity
Less quickly accessible

The Memory Wall

¨ Processor-memory performance gap increased over
50% per year
¤ Processor performance historically improved ~60% per

year
¤ Main memory access time improves ~5% per year

Modern Memory Hierarchy

¨ Trade-off among memory speed, capacity, and cost

Register

Cache
Memory

SSD

Disk

small, fast, expensive

big, slow, inexpensive

Memory Technology

¨ Random access memory (RAM) technology
¤ access time same for all locations (not so true anymore)

¤ Static RAM (SRAM)
n typically used for caches
n 6T/bit; fast but – low density, high power, expensive

¤ Dynamic RAM (DRAM)
n typically used for main memory
n 1T/bit; inexpensive, high density, low power – but slow

RAM Cells

¨ 6T SRAM cell
¤ internal feedback

maintains data while
power on

¨ 1T-1C DRAM cell
¤ needs refresh regularly to

preserve data

wordline

bitline bitline

wordline

bitline

Processor Cache

¨ Occupies a large fraction of die area in modern
microprocessors

Source: Intel Core i7

3-3.5 GHz
~$1000 2014)

Processor Cache

¨ Occupies a large fraction of die area in modern
microprocessors

Source: Intel Core i7

20MB of cache

3-3.5 GHz
~$1000 2014)

Cache Hierarchy

¨ Example three-level cache organization

Core

L2
L3

Off-chip
Memory

32 KB
1 cycle

256 KB
10 cycles

4 MB
30 cycles

8 GB
~300 cycles

L1L1

Cache Hierarchy

¨ Example three-level cache organization

Core

L2
L3

Off-chip
Memory

32 KB
1 cycle

256 KB
10 cycles

4 MB
30 cycles

8 GB
~300 cycles

Application

inst. data

L1L1

Cache Hierarchy

¨ Example three-level cache organization

Core

L2
L3

Off-chip
Memory

32 KB
1 cycle

256 KB
10 cycles

4 MB
30 cycles

8 GB
~300 cycles

Application

inst. data

1. Where to put the application?
2. Who decides?

a. software (scratchpad)
b. hardware (caches)

L1L1

