OUT-OF-ORDER LOADS /STORES

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Recall: Out-of-Order Execution
e

Memory accesses require long time to complete.

R10->T1 ALU
R2->T2
R3->T3 R1:V1
R5->T4 R2:77
R3: 77
T5, ..., T
TO
T1=Mem[10] Uit
v
+R5 +R3 +R2 ld,R10

T4 T3 T2 L T0

Loads and Stores

Imagine multiple load/store in IQ.

PR ——

Branch
Predictor

]

Inst. | Inst.
Memory | | Decoder
Fetch Decode

1
1
1
1
1
|
> Issue Queue (1Q) i | Physical
1
= Register
: FU-1 i File
Front i -
RAT i
> FU-n ;
1
1
Free > Branch p=---- ! Retire
Register RAT
List » Data Memory
> Re-Order Buffer (ROB)
Rename Issue Execute Complete Commit

Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

Instructions in the issue queue Memory

Load R1<Mem[R2]
Load = R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load R7<Mem[R8+16]
Store | R9>Mem[R10]

Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load R1<Mem[R2]
Load = R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load R7<Mem[R8+16]
Store | R9>Mem[R10]

Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load R1<Mem[R2]

Load = R3<Mem[R4+8]

Store | R5>Mem[R6] >
Load R7<Mem[R8+16]

Store | R9>Mem[R10]

Memory Data Dependence

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load | R1¢Mem[R2] ¢——25Sible WAR

Load = R3<Mem[R4+8]

Store | R5>Mem|[R6] 1
Load R7<Mem[R8+16]

Store | R9>Mem[R10]

Memory Data Dependence

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory
Load R1<Mem[R2] g——" 05Sible WAR
Load R3<Mem[R4+8] z
Store | R5>Mem|[R6]
Load = R7€¢Mem[R8+16] € Possible RAW
Store | R9>Mem[R10]

Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load R1€Mem[R2] <— Possible WAR

Load R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load = R7€¢Mem[R8+16] €
Store | R9>Mem[R10]

Possi RAW
Possible WAW

Memory Data Dependence
S

Can we continue executing loads/stores out-of-
order?

O Effective address is required for dependence check

Instructions in the issue queue Memory

Load R1€Mem[R2] <— Possible WAR

Load R3<Mem[R4+8]
Store | R5>Mem|[R6]
Load = R7€¢Mem[R8+16] €
Store | R9>Mem[R10]

Possi RAW
Possible WAW

Does renaming help?

Load-Store Queue
e

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards

Load

P34

P13+8

Load-Store Queue
e

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards

1— P13

Load

P34

P13 + 8

Load-Store Queue
e

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards

1— P13

Load

P34

P13 + 8

Load-Store Queue

Dedicated queue only for load/store instructions

O Check availability of operands every cycle

Two steps for load/store instructions

O Compute the effective address when register is

available

O Send the request to memory if there is no memory

hazards

l_ P13

Load

P34

Oxbeef00

A

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61
Store | P26
Load | P11
Load | P29 | 0x12345
Store | P30 | Ox11111
Load | P15 | 0x22222
load | P10 | Ox11111

Memory

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61 Due to RAW hazards, only those
Store | P26 loads that are not following any

unknown stores can be issued.
Load | P11

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Memory

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 1. Which load instructions can be issued?
Load | P61 Due to RAW hazards, only those
Store | P26 loads that are not following any

unknown stores can be issued.

Load | P11
Can we bypass memory?

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Memory

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 2. Which store instructions can be issued?
Load | P61
Store | P26
Load | P11
Load | P29 | 0x12345
Store | P30 | Ox11111
Load | P15 | 0x22222
load | P10 | Ox11111

Memory

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 2. Which store instructions can be issued?

Load | P61 Due to WAW and WAR hazards, only

Store | P26 when there is no older instructions.
(why?)

Load | P11

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Memory

Memory Dependence Check

-
Checking for RAW, WAR, and WAW hazards

Load | P34 | 0x12345 Which instructions can be issued?
Load | P61
Store | P26 | 0x22222
Load | P11
Load | P29 | 0x12345
Store | P30 | Ox11111
Load | P15 | 0x22222
load | P10 | Ox11111

Memory

Memory Dependence Prediction
S

Can we predict memory dependence?

Load | P34 | 0x12345 Issue/execute load instructions even if they
Load | P61 are following unresolved stores
Store | P26

What if the prediction was not correct?
Load | P11

Load | P29 | 0x12345
Store | P30 | 0x11111
Load | P15 | 0x22222
Load | P10 | Ox11111

Out-of-order Pipeline with LSQ
S —

LSQ is an extension to IQ

PR ——

1
1
1
1
1
|
» Issue Queue (1Q) i | Physical
1
= Register
Branch - FU-1 i File
Predictor Front !
RAT :
} o FUn :
Inst Inst Free i
M nst. > D nSd. > Reg]ster > Branch p==--- ! Retire
emory ecoder List RAT
LSO | Data Memory
Re-Order Buffer (ROB)
Fetch Decode Rename Issue Execute Complete Commit

Memory Hierarchy

“Ideally one would desire an indefinitely large memory capacity
such that any particular [...] word would be immediately
available [...] We are [...] forced to recognize the possibility of
constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.”
-- Burks, Goldstine, and von Neumann, 1946

/ Level T \
Greater capacity
/ Level 2 \ Less quickly accessible

/o level3 \

The Memory Wall

0000
Processor-memory performance gap increased over
50% per year

O Processor performance historically improved ~60% per
year

O Main memory access time improves ~5% per year

10000

1000

Processor

100 -

Performance

10 -

1 . T T T T 1
1985 1990 1995 2000 2005 2010

Modern Memory Hierarchy
e

Trade-off among memory speed, capacity, and cost

small, fast, expensive Register

Cache I—_I

. big, slow, inexpensive

SSD

Disk

Memory Technology
S —

Random access memory (RAM) technology

O access time same for all locations (not so true anymore)

O Static RAM (SRAM)

typically used for caches

6T /bit; fast but — low density, high power, expensive

O Dynamic RAM (DRAM)

typically used for main memory

1T/bit; inexpensive, high density, low power — but slow

RAM Cells

e
6T SRAM cell bifline bitline

O internal feedback wordline

maintains data while

power on L

RY

1T-1C DRAM cell

O needs refresh regularly to

bitline

wordline

_IZ'___‘_
T

preserve data

Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors

3-3.5 GHz
~$1000 2014)

Source: Intel Core i7

Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors

R eredeeyy = P RP PPy | =
PPLPY S bl
T, SRS =

3-3.5 GHz
~$1000 2014)

20MB of cache T S — o
.-~ Memory:Controller="""""

Source: Intel Core i7

Cache Hierarchy

Example three-level cache organization

LT ™
| —
32 KB =
1 cycle L3
Zaoke
cycies 30 cycles
Off-chip
8 GB Memory

~300 cycles

Cache Hierarchy

Example three-level cache organization

L1 ™
N —>
32 KB L2
1 cycle L3
Application
Ffp 256 KB 4 MB
inst. data 10 cycles 30 cycles
Off-chip
8 GB Memory

~300

Cache Hierarchy

Example three-level cache organization

LT >
32 KB L2 —
1 cycle L3
Application 256 KB
inst. data 10 cycles 4 MB
30 cycles
1. Where to put the application?
2. Who decides?]
a. software (scratchpad) Off-chip
8 GB Memory

b. hardware (caches)

~300 cyc/es

