
MEMORY SYSTEM

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Set-associative cache
¤ Cache write policies

Recall: Direct-Mapped Lookup

¨ Byte offset: to select
the requested byte

¨ Tag: to maintain the
address

¨ Valid flag (v):
whether content is
meaningful

¨ Data and tag are
always accessed

hit

data

v
0
1
2

…

1021
1022
1023

tag index byte

=

Set Associative Caches

¨ Improve cache hit rate by allowing a memory location
to be placed in more than one cache block
¤ N-way set associative cache
¤ Fully associative

¨ For fixed capacity, higher associativity typically leads to
higher hit rates
¤ more places to simultaneously map cache lines
¤ 8-way SA close to FA in practice

…

Memory

for (i=0; i<10000; i++) {
a++;
b++;

}

a

b

Set Associative Caches

¨ Improve cache hit rate by allowing a memory location
to be placed in more than one cache block
¤ N-way set associative cache
¤ Fully associative

¨ For fixed capacity, higher associativity typically leads to
higher hit rates
¤ more places to simultaneously map cache lines
¤ 8-way SA close to FA in practice

…

Memoryway 1 way 0

a

b

for (i=0; i<10000; i++) {
a++;
b++;

}

n-Way Set Associative Lookup

¨ Index into cache sets
¨ Multiple tag

comparisons
¨ Multiple data reads
¨ Special cases

¤ Direct mapped
n Single block sets

¤ Fully associative
n Single set cache

=

data

v
0

1

…

510

511

= mux

hit

tag index byte

OR

Example Problem

¨ Find the size of tag, index, and offset bits for an
4MB, 4-way set associative cache with 32B cache
blocks. Assume that the processor can address up to
4GB of main memory.

Example Problem

¨ Find the size of tag, index, and offset bits for an
4MB, 4-way set associative cache with 32B cache
blocks. Assume that the processor can address up to
4GB of main memory.

¨ 4GB = 232 B à address bits = 32
¨ 32B = 25 B à byte offset bits = 5
¨ 4MB/(4x32B) = 215à index bits = 15
¨ tag bits = 32 – 5 – 15 = 12

Example

¨ Consider a 32 kilobyte (KB) 4-way set-associative
data cache array with 32-byte line sizes

¤ How many sets?

¤ How many index bits, offset bits, tag bits?

¤ How large is the tag array?

Example

¨ Consider a 32 kilobyte (KB) 4-way set-associative
data cache array with 32-byte line sizes
¤ cache size = no. sets x no. ways x block size
¤ How many sets?

¤ How many index bits, offset bits, tag bits?

¤ How large is the tag array?

Example

¨ Consider a 32 kilobyte (KB) 4-way set-associative
data cache array with 32-byte line sizes
¤ cache size = no. sets x no. ways x block size
¤ How many sets?
¤ no. sets = 32x1024 / (4 x 32) = 256
¤ How many index bits, offset bits, tag bits?
¤ 8 5 19
¤ How large is the tag array?
¤ no. sets x no. ways x tag bits = 256 x 4 x 19 = 19Kb

Example

¨ A pipeline’s CPI is 1 if all loads/stores hit in cache
¨ Question: 40% of all instructions are loads/stores;

80% of all loads/stores hit in cache (1-cycle);
memory access takes 100 cycles; what is the CPI?

Example

¨ A pipeline’s CPI is 1 if all loads/stores hit in cache
¨ Question: 40% of all instructions are loads/stores;

80% of all loads/stores hit in cache (1-cycle);
memory access takes 100 cycles; what is the CPI?

¨ Solution:
¤ Consider 1000 instructions; 400 instructions are

load/stores, of which 0.8x400 are hits (1 cycle) and
0.2x400 are misses (101 cycles).

¤ CPI = (1x (600 + 320) + 101 x 80)/1000 = 9

Cache Write Policies

¨ Write vs. read
¤ Data and tag are accessed for both read and write
¤ Only for write, data array needs to be updated

¨ Cache write policies

Write lookup

Read lower
level?

Write lower
level?

Write no allocate Write allocate Write back Write through

hitmiss

Write back

¨ On a write access, write to cache only
¤ write cache block to memory only when replaced

from cache
¤ dramatically decreases bus bandwidth usage
¤ keep a bit (called the dirty bit) per cache block

Core

Main Memory

Cache

Write through

¨ Write to both cache and memory (or next level)
¤ Improved miss penalty
¤ More reliable because of maintaining two copies

Core

Main Memory

Cache

Write (No-)Allocate

¨ Write allocate
¤ allocate a cache line for the new data, and replace

old line
¤ just like a read miss

¨ Write no allocate
¤ do not allocate space in the cache for the data
¤ only really makes sense in systems with write buffers

¨ How to handle read miss after write miss?

Replacement Policy

¨ On a read miss, you always bring the block in
(spatial and temporal locality) – but which block do
you replace?
¤ no choice for a direct-mapped cache
¤ randomly pick one of the ways to replace
¤ replace the way that was least-recently used (LRU)
¤ FIFO replacement (round-robin)

¨ Which one is better?

Types of Cache Misses

¨ Compulsory misses: happens the first time a memory
word is accessed – the misses for an infinite cache

¨ Capacity misses: happens because the program
touched many other words before re-touching the same
word – the misses for a fully-associative cache

¨ Conflict misses: happens because two words map to the
same location in the cache – the misses generated while
moving from a fully-associative to a direct-mapped
cache

