MEMORY SYSTEM

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ This lecture
 - Memory system
 - Cache

Computer Organization

□ Classic components of a computing system

Memory System

- Data and instructions are stored on DRAM chips
 - DRAM has high bit density and low speed
 - An access DRAM may take about 300 processor cycles

Processor Memory ~300X

The Memory Wall

- Processor-memory performance gap increased over 50% per year
 - Processor performance historically improved ~60% per year
 - \blacksquare Main memory access time improves $\sim 5\%$ per year

Memory System

- □ Data and instructions are stored on DRAM chips
 - DRAM has high bit density and low speed
 - An access DRAM may take about 300 processor cycles
- How to bridge the speed gap?

Processor Memory

Memory Hierarchy

□ The basic structure of a memory hierarchy.

Registers 1KB 1 cycle L1 data or instruction Cache 32KB 2 cycles

L2 cache 2MB 15 cycles Memory 1GB 300 cycles

Disk 80 GB 10M cycles

Processor Cache

 Occupies a large fraction of die area in modern microprocessors

Source: Intel Core i7

Processor Cache

 Occupies a large fraction of die area in modern microprocessors

Source: Intel Core i7

Cache Hierarchy

Example three-level cache organization

Cache Hierarchy

Example three-level cache organization

Cache Hierarchy

Example three-level cache organization

Memory Hierarchy

- □ The basic structure of a memory hierarchy.
- Multiple levels of the memory

Idea: keep important data closer to processor.

Principle of Locality

- Memory references exhibit localized accesses
- Types of locality
 - spatial: probability of access to $A+\delta$ at time $t+\varepsilon$ highest when $\delta \rightarrow 0$
 - temporal: probability of accessing $A+\varepsilon$ at time $t+\delta$ highest when $\delta \rightarrow 0$


```
for (i=0; i<1000; ++i) {
    sum = sum + a[i];
}
```

Key idea: store local data in fast cache levels

Principle of Locality

- Memory references exhibit localized accesses
- Types of locality
 - spatial: probability of access to $A+\delta$ at time $t+\varepsilon$ highest when $\delta \rightarrow 0$
 - temporal: probability of accessing $A+\varepsilon$ at time $t+\delta$ highest when $\delta \rightarrow 0$

Key idea: store local data in fast cache levels

Cache Architecture

- Design principles
 - Temporal locality: if you used some data recently, you will likely use it again
 - Spatial locality: if you used some data recently, you will likely access its neighbors
- □ Cache terminology
 - Access time
 - Hit vs. miss
 - Miss penalty

Processor

Cache

Memory

Direct-Mapped Cache

Cache address

Direct-Mapped Cache

□ Cache lookup

