
PIPELINE HAZARDS

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Pipeline Hazards

n Structural
n Data
n Control

Pipelined Architecture

¨ Five stage pipeline
¤ Critical path determines the cycle time

Write Back

Inst. Fetch Inst. Decode Execute Memory

Inst.
Memory

Register
File

ALU
Data

Memory

PC

Pipelined Architecture

Time

¨ The more overlapping instructions: the better
performance.
¤ n: # instructions, p: # pipeline stages, and s: # stall cycles

Ideal pipelining

cycles = n + p – 1

Pipelined Architecture

Time Time

¨ The more overlapping instructions: the better
performance.
¤ n: # instructions, p: # pipeline stages, and s: # stall cycles

Ideal pipelining Real pipelining

cycles = n + p – 1 cycles = n + p – 1 + s

Pipeline Hazards

¨ Structural hazards: multiple instructions compete for
the same resource

¨ Data hazards: a dependent instruction cannot
proceed because it needs a value that hasn’t been
produced

¨ Control hazards: the next instruction cannot be
fetched because the outcome of an earlier branch is
unknown

Structural Hazard in the Pipeline

¨ Unified memory and register file.

Write Back

Inst. Fetch

Inst. Decode Execute

Memory

Unified
Memory

Register
File

ALU

PC

Structural Hazards

¨ 1. Unified memory for instruction and data

lw $1,0($2)

add $7, $1, $0

sub $6, $4, $5

lw $3, 0($20)

Structural Hazards

¨ 1. Unified memory for instruction and data

Separate inst. and data memories.

lw $1,0($2)

add $7, $1, $0

sub $6, $4, $5

lw $3, 0($20)

Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

lw $1,0($2)

add $7, $1, $0

sub $6, $4, $5

lw $3, 0($20)

Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

Register access in half cycles.

lw $1,0($2)

add $7, $1, $0

sub $6, $4, $5

lw $3, 0($20)

Data Hazards

¨ Solution: register read and write in half cycles

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

lw $1, 0($2)

add $3, $1, $0

sub $4, $1, $3

Loading data from memory.

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

lw $1, 0($2)

add $3, $1, $0

sub $4, $1, $3

Loaded data will be available two cycles later.

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

lw $1, 0($2)

add $3, $1, $0

sub $4, $1, $3

Nothing

Nothing

Inserting two bubbles.

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

lw $1, 0($2)

add $3, $1, $0

sub $4, $1, $3

Nothing

Inserting single bubble + RF bypassing.

Load delay slot.
SW vs. HW management?

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

add $1,$2,$3

add $3,$1,$0

sub $4,$1,$3

add $5,$1,$0

Using the result of an ALU instruction.

Data Hazards

¨ True dependence: read-after-write (RAW)
¤ Consumer has to wait for producer

add $1,$2,$3

add $3,$1,$0

sub $4,$1,$3

add $5,$1,$0

Forwarding ALU result.

Using the result of an ALU instruction.

Data Hazards

¨ Forwarding with additional hardware

Data Hazards

¨ How to detect and resolve data hazards
¤ Show all of the data hazards in the code below

lw $1, 0($2)

add $2, $1, $0

sub $1, $1, $2

sw $2, 0($3)

Data Hazards

¨ How to detect and resolve data hazards
¤ Show all of the data hazards in the code below

$1ß Mem[$2]

$2ß $1+$0

$1ß $1-$2

Mem[$3] ß $2

lw $1, 0($2)

add $2, $1, $0

sub $1, $1, $2

sw $2, 0($3)

Data Hazards

¨ How to detect and resolve data hazards
¤ Show all of the data hazards in the code below

$1ß Mem[$2]

$2ß $1+$0

$1ß $1-$2

Mem[$3] ß $2

WAW

Data Hazards

¨ How to detect and resolve data hazards
¤ Show all of the data hazards in the code below

$1ß Mem[$2]

$2ß $1+$0

$1ß $1-$2

Mem[$3] ß $2

WAR

Data Hazards

¨ How to detect and resolve data hazards
¤ Show all of the data hazards in the code below

$1ß Mem[$2]

$2ß $1+$0

$1ß $1-$2

Mem[$3] ß $2

RAW

