### PIPELINE HAZARDS

Mahdi Nazm Bojnordi

**Assistant Professor** 

School of Computing

University of Utah



## Overview

- □ This lecture
  - Pipeline Hazards
    - Structural
    - Data
    - Control

# Pipelined Architecture

- □ Five stage pipeline
  - Critical path determines the cycle time



# Pipelined Architecture

- The more overlapping instructions: the better performance.
  - n: # instructions, p: # pipeline stages, and s: # stall cycles

#### **Ideal pipelining**



## Pipelined Architecture

- The more overlapping instructions: the better performance.
  - n: # instructions, p: # pipeline stages, and s: # stall cycles

#### Ideal pipelining



#### **Real pipelining**

$$cycles = n + p - 1 + s$$

$$Time$$

# Pipeline Hazards

- Structural hazards: multiple instructions compete for the same resource
- Data hazards: a dependent instruction cannot proceed because it needs a value that hasn't been produced
- Control hazards: the next instruction cannot be fetched because the outcome of an earlier branch is unknown

# Structural Hazard in the Pipeline

□ Unified memory and register file.



### □ 1. Unified memory for instruction and data



### □ 1. Unified memory for instruction and data



- 1. Unified memory for instruction and data
- □ 2. Register file with shared read/write access ports



- 1. Unified memory for instruction and data
- □ 2. Register file with shared read/write access ports



### □ Solution: register read and write in half cycles



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

#### Loading data from memory.



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

Loaded data will be available two cycles later.



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

#### Inserting two bubbles.



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

#### Inserting single bubble + RF bypassing.



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

#### Using the result of an ALU instruction.



- □ True dependence: read-after-write (RAW)
  - Consumer has to wait for producer

#### Using the result of an ALU instruction.



□ Forwarding with additional hardware



- How to detect and resolve data hazards
  - Show all of the data hazards in the code below

```
lw $1, 0($2)
```

add \$2, \$1, \$0

sub \$1, \$1, \$2

sw \$2, 0(\$3)

- How to detect and resolve data hazards
  - Show all of the data hazards in the code below

sw \$2, 
$$0(\$3)$$
 Mem[ $\$3$ ]  $\leftarrow$  \$2

- How to detect and resolve data hazards
  - Show all of the data hazards in the code below



- □ How to detect and resolve data hazards
  - Show all of the data hazards in the code below



- How to detect and resolve data hazards
  - Show all of the data hazards in the code below

