PIPELINE HAZARDS

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , o
U S A CS/ECE 3810: Computer Organization




Overview
"

This lecture

O Pipeline Hazards

Structural
Data

Control



Pipelined Architecture
-

Five stage pipeline
O Critical path determines the cycle time

_________________________________________________________

~
AN
AY

!/ Write Back

Register
File

Inst. Fetch | i Inst. Decode ;! Execute i Memory

___________________________________________________________________



Pipelined Architecture
-

The more overlapping instructions: the better
performance.

O n: # instructions, p: # pipeline stages, and s: # stall cycles
Ideal pipelining

cycles=n+p-1

Time



Pipelined Architecture
-

The more overlapping instructions: the better
performance.

O n: # instructions, p: # pipeline stages, and s: # stall cycles

Ideal pipelining Real pipelining

cycles=n+p-1 cycles=n+p—-1+s
— —_—

__cuupy (moms

Time " Time



Pipeline Hazards

Structural hazards: multiple instructions compete for
the same resource

Data hazards: a dependent instruction cannot
proceed because it needs a value that hasn’t been
produced

Control hazards: the next instruction cannot be
fetched because the outcome of an earlier branch is
unknown



Structural Hazard in the Pipeline

Unified memory and register file.

Unified

- F7771 Memory [HiT

mams

Register
File

1
_____
r 1

i1 Inst. Decode ;i  Execute




Structural Hazards

1. Unified memory for instruction and data

w $1,0($2)

Iw $3, 0($20)

sub $6, $4, $5

add $7, $1, $0




Structural Hazards

1. Unified memory for instruction and data

w $1,0($2)

Iw $3, 0($20)

sub $6, $4, $5

add $7, $1, $0

Separate inst. and data memories. ' | =



Structural Hazards

1. Unified memory for instruction and data

2. Register file with shared read/write access ports

cC4 CCs cCe6

w $1,0($2)

Iw $3, 0($20)

sub $6, $4, $5 : —E— @H
add $7, $1, $0 gl gy

|
| |




Structural Hazards

1. Unified memory for instruction and data

2. Register file with shared read/write access ports

cCc4 CcCs cCe6

w $1,0($2)

Iw $3, 0($20)

sub $6, $4, $5 : —E— ;FH
add $7, $1, $0 u— j

Register access in half cycles. e

|
| |




Data Hazards

Solution: register read and write in half cycles

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/
address calculation

MEM: Memory access

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
Instruction 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Address

Read

Data
memory

Write
data

data

—_—l 1

0

WB: Write back

M
u
x

Add
4 —»-]
0 M Read Read
register 1 data 1
u - Address H——
’ x Read |
1 register 2 +
Registers I
Write Read :
Instruction register data 2 |
memory . |
| Write

data :
|
|
|
16 . 32 |
N Sign- | | I
N I
|
|
|
1
|
|
|
|




Data Hazards

True dependence: read-after-write (RAW)
O Consumer has to wait for producer

Loading data from memory.

cC 4 CCs5s cCc e

Iw $1, 0($2) i | hind

add $3, $1, $0 ™

sub $4, $1, $3 : —E— d}

| |




Data Hazards

True dependence: read-after-write (RAW)
O Consumer has to wait for producer

Loaded data will be available two cycles later.

-k
sub $4, $1, $3 D e — d}

| |




Data Hazards

True dependence: read-after-write (RAW)

O Consumer has to wait for producer

Inserting two bubbles.

w $1, 0($2)

Nothing

Nothing

add $3, $1, $0

sub $4, $1, $3




Data Hazards

True dependence: read-after-write (RAW)
O Consumer has to wait for producer

Inserting single bubble + RF bypassing.

Time (in clock cyclesy

w $1, 0($2) . D ahed lall o ] -l
Nothing 'M H = res | ]
add $3, $1, $0 M
sub $4, $1, $3
Load delay slot.

| |

SW vs. HW management? || _




Data Hazards

True dependence: read-after-write (RAW)
O Consumer has to wait for producer

Using the result of an ALU instruction.

Time (in clock cyclesy

CcC1 cCcz2 cC 3 cC 4 CCs cCc e

add $1,$2,$3 [ ™ D”‘% Iall ou | mes

add $5,$1,50 g H = Regi ;{F
add $3,$1,%0 m e e o A
sub $4,$1,$3 ™M hﬁ&ﬂF“g__

| |




Data Hazards

True dependence: read-after-write (RAW)
O Consumer has to wait for producer

Using the result of an ALU instruction.

| |

Forwarding ALU result. @~ — || - —




Data Hazards

Forwarding with additional hardware

ol

EX/MEM

)

{ ForwardA

\

ALU

MEM/WB

ID/EX
- .
— > o
— —
Registers
— > >
| 2
Rs
Rt
Rt >
Rd >

F’CL=1)

Data

Y

memory

Y

P

EX/MEM.RegisterRd

- Forwarding \ ——

MEM/WB.RegisterRd

>\ unit /




Data Hazards
O

How to detect and resolve data hazards

O Show all of the data hazards in the code below

w $1, 0($2)
add $2, $1, $0
sub $1, $1, $2

sw $2, 0($3)



Data Hazards
O

How to detect and resolve data hazards

O Show all of the data hazards in the code below

w $1, 0($2) $1<& Mem[$2]
add $2, $1, $0 $2& $1+%0
sub $1, $1, $2 $1& $1-$2

sw $2, 0($3) Mem[$3] < $2



Data Hazards
O

How to detect and resolve data hazards

O Show all of the data hazards in the code below

A$1€ Mem[$2]

v31<& $1-$2

Mem[$3] & $2



Data Hazards

How to detect and resolve data hazards

O Show all of the data hazards in the code below

$2< $1+3%0

W ors:

\

Mem[$3] & $2



Data Hazards

How to detect and resolve data hazards

O Show all of the data hazards in the code below

$1& Mem[$2]
$24 $1+%0
$1€ 32 RAW

Mem[$3] & $2



