
SEQUENTIAL CIRCUITS

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Carry look-ahead Adder
¤ Clock and sequential circuits

Recall: Carry Ripple Adder

¨ Simplest design by cascading 1-bit boxes
¤ Each 1-bit box sequentially implements AND and OR
¤ Critical path: the total delay is the time to go through

64 gates

¨ How to make a 32-bit addition faster?

… CinCout

S0S1S2S3S4S31

A0 B0A1 B1A2 B2A3 B3A4 B4A31 B31

Recall: Carry Ripple Adder

¨ Simplest design by cascading 1-bit boxes
¤ Each 1-bit box sequentially implements AND and OR
¤ Critical path: the total delay is the time to go through

64 gates

¨ How to make a 32-bit addition faster?
¨ Recall: any logic equation can be expressed as the

sum of products (only 2 gate levels!)
¤ Challenges: many parallel gates with very large inputs
¤ Solution: we’ll find a compromise

Fast Adder

¨ Computing carry-outs
¤ CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
¤ CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1
¤ = b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +
¤ a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1
¤ …
¤ CarryIn32 = a really large sum of really large

products

¨ Each gate is enormous and slow!

Fast Adder

¨ Computing carry-outs: equation re-phrased
¨ Ci+1 = ai.bi + ai.Ci + bi.Ci
¨ = (ai.bi) + (ai + bi).Ci

¨ Generate signal = ai.bi
¤ The current pair of bits will generate a carry if they are

both 1
¨ Propagate signal = ai + bi

¤ The current pair of bits will propagate a carry if either is 1

¨ Therefore, Ci+1 = Gi + Pi . Ci

Fast Adder

¨ Computing carry-outs: example
c1 = g0 + p0.c0
c2 = g1 + p1.c1 = g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

Either,
(1) a carry was just generated, or
(2) a carry was generated in the last step and was propagated, or
(3) a carry was generated two steps back and was propagated by both

the next two stages, or
(4) a carry was generated N steps back and was propagated by every

single one of the N next stages

(1) (2) (3) (4) (4)

Fast Adder

¨ Divide and Conquer
¤ Challenge: for the 32nd bit, we must AND every single

propagate bit to determine what becomes of c0 (among
other things)

¤ Solution: the bits are broken into groups (of 4) and each
group computes its group-generate and group-propagate

¤ For example, to add 32 numbers, you can partition the task
as a tree .

. . . .
.

Fast Adder

¨ P and G for 4-bit blocks
¤ Compute P0 and G0 (super-propagate and super-generate) for the first

group of 4 bits (and similarly for other groups of 4 bits)
n P0 = p0.p1.p2.p3
n G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3

¤ Carry out of the first group of 4 bits is
n C1 = G0 + P0.c0
n C2 = G1 + P1.G0 + P1.P0.c0
n C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)
n C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)

¤ By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of gates
(equal to the height of the tree)

Fast Adder

¨ Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011
g 0000 0000 0010 0011
p 1111 1111 1111 1011

P 1 1 1 0
G 0 0 1 0

C4 = 1

Fast Adder: Carry Look-Ahead

¨ 16-bit Ripple-carry takes
32 steps

¨ This design takes how many
steps?

Recall: Clocking and Cycle Time

¨ Operation of digital hardware governed by a constant-
rate clock

Clock (cycles)

Data transfer
and computation

Update state

Cycle Time

¨ A microprocessor consists of many circuits operating
simultaneously, each of which
¤ takes in inputs at time Tinput,
¤ takes time Texecute to execute the logic, and
¤ produces outputs at time Toutput

Combinational Circuits

¨ Circuits we have seen were combinational
¤ when inputs change, the outputs change after a while

(time = logic delay thru circuit)
¤ Example: adder

Combinational
Circuit

Inputs Outputs Combinational
Circuit

Sequential Circuits

¨ Sequential circuit consists of combinational circuit
and a storage element (latch)

¨ The clock acts like a start and stop signal
¤ The latch ensures that the inputs to the circuit do not

change during a clock cycle

Combinational
Circuit

Outputs Combinational
Circuit

Latch Latch

Inputs

Clock Clock

Sequential Circuits

¨ At the start of the clock cycle, the rising edge causes the “state” storage to
store some input values

¨ This state will not change for an entire cycle

¨ The combinational circuit has some time to accept the value of “state” and
“inputs” and produce “outputs”

¨ Some of the outputs (for example, the value of next “state”) may feed back
(but through the latch so they’re only seen in the next cycle)

State

Combinational ckt

Clock

Inputs Outputs

Inputs

Design of an S-R Latch

¨ An S-R latch: set-reset latch
¤ When Set is high, a 1 is stored
¤ When Reset is high, a 0 is stored
¤ When both are low, the previous state is preserved (hence,

known as a storage or memory element)
¤ Both are high – this set of inputs is not allowed

Design of a D Latch

¨ The value of the input D signal (data) is stored only
when the clock is high – the previous state is
preserved when the clock is low

Design of a D Flip Flop

¨ Latch vs. Flip Flop
¤ Latch: outputs can change any time the clock is high

(asserted)
¤ Flip flop: outputs can change only on a clock edge

n Technically, two D latches in series

