HARDWARE FOR ARITHMETIC

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

THE

OF UTAH

CS/ECE 3810: Computer Organization UNIVERSITY

Overview

- Past lectures
 - High-level stuff mostly on ISA, Assembly, and number representation
- This lecture
 - Basics of logic design
 - Hardware for arithmetic

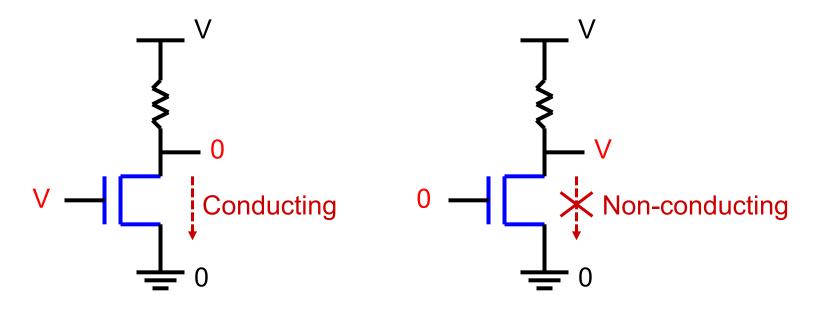
Fundamentals of Digital Design

Binary logic: two voltage levels

high and low; 1 and 0; true and false

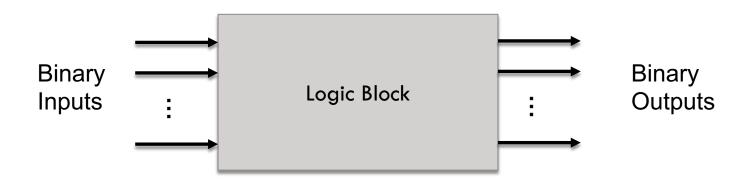
Binary arithmetic

Based on a 3-terminal device that acts as a switch



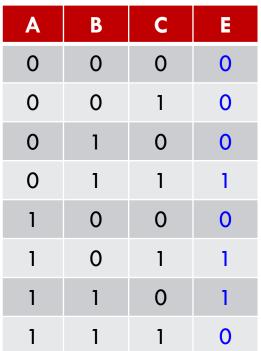
Logic Blocks

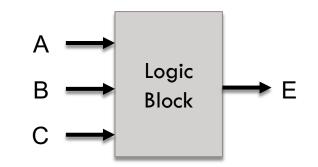
- A logic block comprises binary inputs and binary outputs
 - **Combinational:** the output is only a function of the inputs
 - Sequential: the block has some internal memory (state) that also influences the output
- Gate: a basic logic block that implements AND, OR, NOT, etc.



Logic Blocks: Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
 - Example: consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true





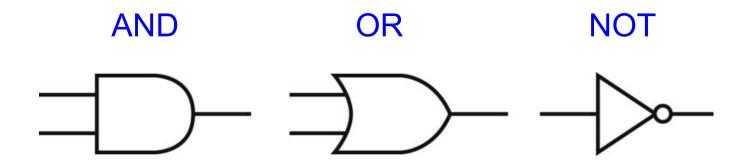
Boolean Algebra

 Three primary operators are used to realize Boolean functions

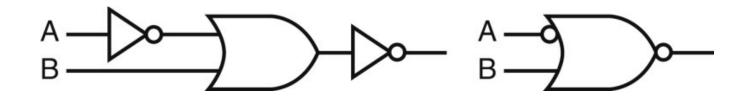
Boolean operations
OR (symbol +)
X = A + B : X is true if at least one of A or B is true
AND (symbol .)
X = A . B : X is true if both A and B are true
NOT (symbol -)
X = A : X is the inverted value of A

Pictorial Representation

Logic gates



□ What function is the following?



Boolean Algebra Rules

Identity law
 A + 0 = A
 A . 1 = A

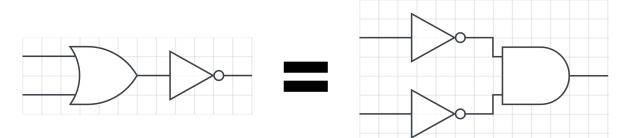
Commutative laws A + B = B + A $A \cdot B = B \cdot A$

- Zero and One laws
 A + 1 = 1
 A . 0 = 0
- Inverse laws
 A · A = 0
 A + A = 1

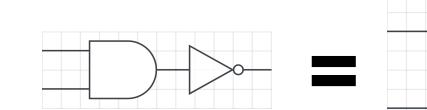
- Associative laws
 A + (B + C) = (A + B) + C
 A . (B . C) = (A . B) . C
 - Distributive laws
 A. (B + C) = (A.B) + (A.C)
 A + (B.C) = (A + B). (A + C)

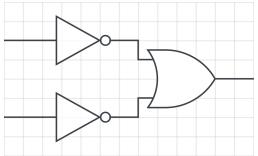
DeMorgan's Law

$$\Box A + B = A . B$$



 $\Box \overline{A \cdot B} = \overline{A} + \overline{B}$





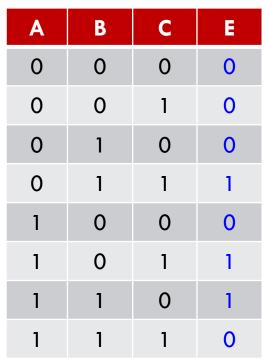
Example: Boolean Equation

- Consider the logic block that has an output E that is true only if exactly two of the three inputs A, B, C are true
- Multiple correct equations
 - Two must be true, but all three <u>cannot</u> be true
 - \blacksquare E = ((A . B) + (B . C) + (A . C)) . (A . B . C)

■ Identify the three cases where it is true = $E = (A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$

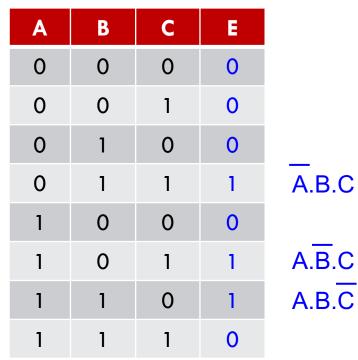
Implementing Boolean Functions

- Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products



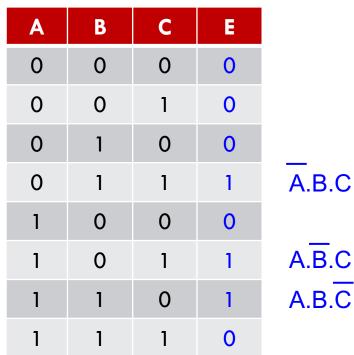
Implementing Boolean Functions

- □ Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products



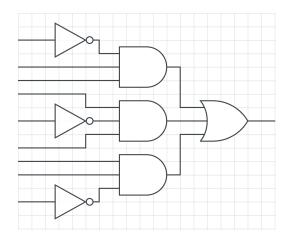
Implementing Boolean Functions

- □ Can realize any logic block with the AND, OR, NOT
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products



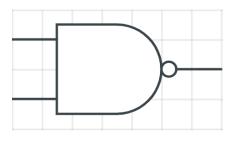
Sum of Products

 $\mathsf{E} = (\overline{\mathsf{A}}.\mathsf{B}.\mathsf{C}) + (\overline{\mathsf{A}}.\overline{\mathsf{B}}.\mathsf{C}) + (\overline{\mathsf{A}}.\overline{\mathsf{B}}.\overline{\mathsf{C}})$

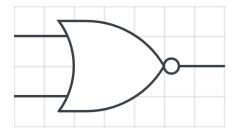


Universal Gates

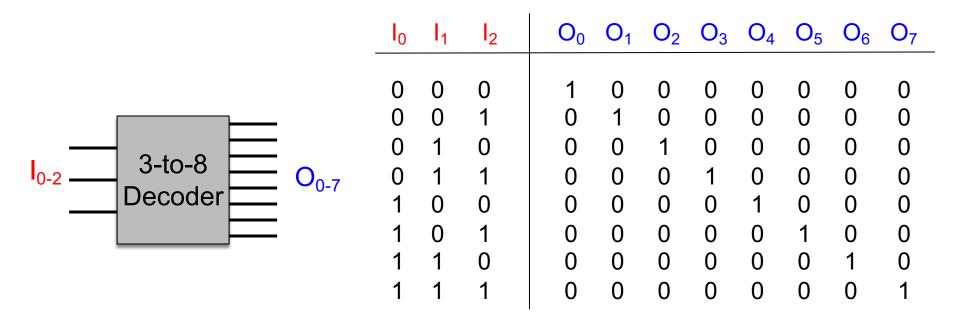
- Universal gate is a logic that can be used to implement any complex function
 - NAND
 - Not of AND
 - A nand $B = \overline{A.B}$



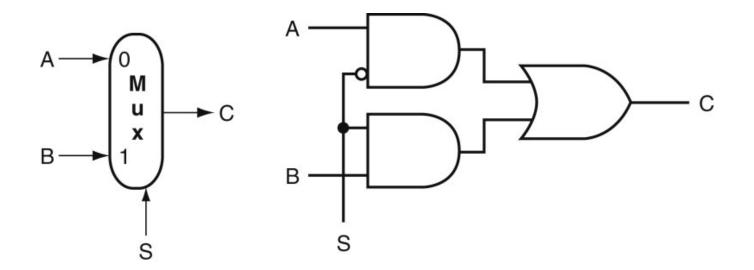
- Not of OR
- $\blacksquare A nor B = A + B$



An n-input decoder takes n inputs, based on which only one out of 2ⁿ outputs is activated



 A multiplexer (or selector) reflects one of n inputs on the output depending on the value of the select bits
 Example: 2-input mux



 A full adder generates the sum and carry for each bit position
 1 0 0 1

Α	В	C _{in}	Sum	C _{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Sum	
Cout	

0 1 0 1

A full adder generates the sum and carry for each bit position
1 0 0 1

Α	В	C _{in}	Sum	C _{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

	1	0	0	1
	0	1	0	1
Sum	1	1	1	0
Cout	0	0	0	1

A full adder generates the sum and carry for each bit position

Α	В	C _{in}	Sum	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	1	0	0	1	
	0	1	0	1	
Sum	1	1	1	0	
Cout	0	0	0	1	

Equations:

$$\begin{array}{c} Sum = \\ C_{in}.\overline{A}.\overline{B} + B.\overline{C}_{in}.\overline{A} + A.\overline{C}_{in}.\overline{B} + A.B.C_{in} \end{array}$$

Cout = $A.B.C_{in} + A.B.\overline{C}_{in} + A.C_{in}.\overline{B} + B.C_{in}.\overline{A} =$ $A.B + A.C_{in} + B.C_{in}$

A full adder generates the sum and carry for each bit position
1 0 0 1

