
HARDWARE FOR ARITHMETIC

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Past lectures
¤ High-level stuff mostly on ISA, Assembly, and number

representation

¨ This lecture
¤ Basics of logic design
¤ Hardware for arithmetic

Fundamentals of Digital Design

¨ Binary logic: two voltage levels
¤ high and low; 1 and 0; true and false

¨ Binary arithmetic
¤ Based on a 3-terminal device that acts as a switch

V

V

0

0

Conducting 0

V

0

V

Non-conducting

Logic Blocks

¨ A logic block comprises binary inputs and binary outputs
¤ Combinational: the output is only a function of the inputs
¤ Sequential: the block has some internal memory (state) that also

influences the output

¨ Gate: a basic logic block that implements AND, OR, NOT,
etc.

Logic Block… …Binary
Inputs

Binary
Outputs

Logic Blocks: Truth Table

¨ A truth table defines the outputs of a logic block for
each set of inputs
¤ Example: consider a block with 3 inputs A, B, C and an

output E that is true only if exactly 2 inputs are true
A B C E

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Logic
Block

A

B

C

E

Boolean Algebra

¨ Three primary operators are used to realize
Boolean functions

¨ Boolean operations
¤ OR (symbol +)

n X = A + B : X is true if at least one of A or B is true
¤ AND (symbol .)

n X = A . B : X is true if both A and B are true
¤ NOT (symbol)

n X = A : X is the inverted value of A

Pictorial Representation

¨ Logic gates

¨ What function is the following?

AND OR NOT

Boolean Algebra Rules

¨ Identity law
¤ A + 0 = A
¤ A . 1 = A

¨ Zero and One laws
¤ A + 1 = 1
¤ A . 0 = 0

¨ Inverse laws
¤ A . A = 0
¤ A + A = 1

¨ Commutative laws
¤ A + B = B + A
¤ A . B = B . A

¨ Associative laws
¤ A + (B + C) = (A + B) + C
¤ A . (B . C) = (A . B) . C

¨ Distributive laws
¤ A . (B + C) = (A . B) + (A . C)
¤ A + (B . C) = (A + B) . (A + C)

DeMorgan’s Law

¨ A + B = A . B

¨ A . B = A + B

=

=

Example: Boolean Equation

¨ Consider the logic block that has an output E that is
true only if exactly two of the three inputs A, B, C
are true

¨ Multiple correct equations
¤ Two must be true, but all three cannot be true

n E = ((A . B) + (B . C) + (A . C)) . (A . B . C)

¤ Identify the three cases where it is true
n E = (A . B . C) + (A . C . B) + (C . B . A)

Implementing Boolean Functions

¨ Can realize any logic block with the AND, OR, NOT
¤ Draw the truth table
¤ For each true output, represent the corresponding inputs as

a product
¤ The final equation is a sum of these products

A B C E

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Implementing Boolean Functions

¨ Can realize any logic block with the AND, OR, NOT
¤ Draw the truth table
¤ For each true output, represent the corresponding inputs as

a product
¤ The final equation is a sum of these products

A B C E

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

A.B.C

A.B.C
A.B.C

Implementing Boolean Functions

¨ Can realize any logic block with the AND, OR, NOT
¤ Draw the truth table
¤ For each true output, represent the corresponding inputs as

a product
¤ The final equation is a sum of these products

A B C E

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

A.B.C

A.B.C
A.B.C

E = (A.B.C) + (A.B.C) + (A.B.C)

Sum of Products

Universal Gates

¨ Universal gate is a logic that can be used to
implement any complex function
¤ NAND

n Not of AND
n A nand B = A.B

¤ NOR
n Not of OR
n A nor B = A+B

Common Logic Block

¨ An n-input decoder takes n inputs, based on which
only one out of 2n outputs is activated

I0 I1 I2 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

3-to-8
Decoder

I0-2 O0-7

Common Logic Block

¨ A multiplexer (or selector) reflects one of n inputs on
the output depending on the value of the select bits
¤ Example: 2-input mux

Common Logic Block

¨ A full adder generates the sum and carry for each
bit position

A B Cin Sum Cout

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0 1
0 1 0 1

Sum
Cout

Common Logic Block

¨ A full adder generates the sum and carry for each
bit position

A B Cin Sum Cout

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0 1
0 1 0 1

Sum
Cout

1 1 1 0
0 0 0 1

Common Logic Block

¨ A full adder generates the sum and carry for each
bit position

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

1 0 0 1
0 1 0 1

Sum
Cout

1 1 1 0
0 0 0 1

Equations:
Sum =

Cin.A.B + B.Cin.A + A.Cin.B + A.B.Cin

Cout =
A.B.Cin + A.B.Cin + A.Cin.B + B.Cin.A =

A.B + A.Cin + B.Cin

Common Logic Block

¨ A full adder generates the sum and carry for each
bit position 1 0 0 1

0 1 0 1

Sum
Cout

1 1 1 0
0 0 0 1

Equations:
Sum =

Cin.A.B + B.Cin.A + A.Cin.B + A.B.Cin

Cout =
A.B.Cin + A.B.Cin + A.Cin.B + B.Cin.A =

A.B + A.Cin + B.Cin

