
NUMERICAL OPERATIONS

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Overflow for addition/subtraction
¤ Multiplication
¤ Division

Addition/Subtraction Overflow

¨ Unsigned Numbers: overflow happens when the last
carry (1) cannot be accommodated.
¤ i.e., there is not enough memory bits to represent the

number

Example:

7dec: 0 1 1 1bin

10dec: 1 0 1 0bin

7dec: 0 1 1 1bin

2dec: 0 0 1 0bin

Addition/Subtraction Overflow

¨ Unsigned Numbers: overflow happens when the last
carry (1) cannot be accommodated.
¤ i.e., there is not enough memory bits to represent the

number

Example:

7dec: 0 1 1 1bin

10dec: 1 0 1 0bin

1dec: 0 0 0 1bin

7dec: 0 1 1 1bin

2dec: 0 0 1 0bin

9dec: 1 0 0 1bin

Addition/Subtraction Overflow

¨ Signed Numbers: overflow happens if the most
significant bit is not the same as every bit to its left

n e.g., the sum of two positive numbers is a negative result
n e.g., the sum of two negative numbers is a positive result

¤ Adding positive and negative numbers will not overflow

Example:

+7dec: 0 1 1 1bin

-6dec: 1 0 1 0bin

+7dec: 0 1 1 1bin

+2dec: 0 0 1 0bin

Addition/Subtraction Overflow

¨ Signed Numbers: overflow happens if the most
significant bit is not the same as every bit to its left

n e.g., the sum of two positive numbers is a negative result
n e.g., the sum of two negative numbers is a positive result

¤ Adding positive and negative numbers will not overflow

Example:

+7dec: 0 1 1 1bin

-6dec: 1 0 1 0bin

+1dec: 0 0 0 1bin

+7dec: 0 1 1 1bin

+2dec: 0 0 1 0bin

-7dec: 1 0 0 1bin

MIPS Instructions

¨ Instructions add, addi, and sub may cause
exceptions on overflow
¤ Software needs to handle exceptions

n More on this later

¨ MIPS provides the addu, addiu, and subu
instructions that work with unsigned integers and
never flag an overflow
¤ Other instructions may be executed to detect the

overflow

Dealing with >32-bit

¨ Example 1: Store the unsigned value
6538305685dec in the register file.

1 10000101 10110110 10100000 10010101bin 1 85B6 A095hex

Dealing with >32-bit

¨ Example 1: Store the unsigned value
6538305685dec in the register file.

1 10000101 10110110 10100000 10010101bin 1 85B6 A095hex

lui $t1, 0x85B6
ori $t1, $t1, 0xA095
ori $t0, $zero, 1

64 bits
Two 32-bit registers ($t0 and $t1)

$t0 $t1

Dealing with >32-bit

¨ Example 2: add the unsigned 64-bit values in
($t0,$t1) and ($t2,$t3). Store the result in ($t4,$t5).

addu $t5, $t1, $t3
addu $t4, $t0, $t2

64 bits
Two 32-bit registers for each value

$t0 $t1

$t2 $t3

$t4 $t5

Dealing with >32-bit

¨ Example 2: add the unsigned 64-bit values in
($t0,$t1) and ($t2,$t3). Store the result in ($t4,$t5).

64 bits
Two 32-bit registers for each value

$t0 $t1

$t2 $t3

$t4 $t5

addu $t5, $t1, $t3
addu $t4, $t0, $t2
sltu $t6, $t5, $t1
sltu $t7, $t5, $t3
beq $t6, $zero, OK
beq $t7, $zero, OK
addiu $t4, $t4, 1

OK: …

Multiplication Example

¨ Multi-step process
¨ Every step

¤ multiplicand is shifted
¤ next bit of multiplier is

examined (also a shifting step)
¤ if this bit is 1, shifted

multiplicand is added to the
product

Multiplicand 1000ten
Multiplier x 1001ten

1000

0000
0000

1000

Product 1001000ten

Multiplication Example

¨ Multi-step process
¨ Every step

¤ multiplicand is shifted
¤ next bit of multiplier is

examined (also a shifting step)
¤ if this bit is 1, shifted

multiplicand is added to the
product

Multiplicand 1000ten
Multiplier x 1001ten

1000

0000
0000

1000

Product 1001000ten

Multiplication Algorithm 2

¨ A more efficient algorithm
¤ 32-bit ALU and multiplicand is untouched
¤ sum keeps shifting right

n number of bits in product + multiplier = 64,
n hence, they share a single 64-bit register

Multiplication Notes

¨ The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

¨ We can also convert negative numbers to positive,
multiply the magnitudes, and convert to negative if
signs disagree

¨ The product of two 32-bit numbers can be a 64-bit
number
¤ In MIPS, the product is saved in two 32-bit registers

MIPS Instructions

¨ Signed multiplication (mult)

¨ Similarly for unsigned multiplication (multu)

mult $s2, $s3

mfhi $s0
mflo $s1

computes the product and stores
it in two “internal” registers that
can be referred to as hi and lo

moves the value in hi into $s0
moves the value in lo into $s1

multu $s2, $s3

mfhi $s0
mflo $s1

Multiplication: Fast Algorithm

¨ The previous algorithm requires a
clock to ensure that the earlier
addition has completed before
shifting

¨ This algorithm can quickly set up
most inputs – it then has to wait
for the result of each add to
propagate down – faster
because no clock is involved

¨ Note: high transistor cost

Division Example

¨ Multi-step process
¤ shift divisor right and compare it with current dividend

n if divisor is larger, shift 0 as the next bit of the quotient
n if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

Division Example

¨ Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values
1

2

3

4

5

Division Example

¨ Divide 7ten (0000 0111two) by 2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0 è +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div

Rem >= 0 è shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001

