#### NUMERICAL OPERATIONS

Mahdi Nazm Bojnordi

**Assistant Professor** 

School of Computing

University of Utah



#### Overview

- □ This lecture
  - Overflow for addition/subtraction
  - Multiplication
  - Division

- Unsigned Numbers: overflow happens when the last carry (1) cannot be accommodated.
  - i.e., there is not enough memory bits to represent the number

#### Example:

- Unsigned Numbers: overflow happens when the last carry (1) cannot be accommodated.
  - i.e., there is not enough memory bits to represent the number

#### Example:

 $1_{dec}$ : 0 0 0  $1_{bin}$   $9_{dec}$ : 1 0 0  $1_{bin}$ 

- Signed Numbers: overflow happens if the most
   significant bit is not the same as every bit to its left
  - e.g., the sum of two positive numbers is a negative result
  - e.g., the sum of two negative numbers is a positive result
  - Adding positive and negative numbers will not overflow

#### Example:

$$+7_{\text{dec}}$$
: 0 1 1 1<sub>bin</sub>  $+7_{\text{dec}}$ : 0 1 1 1<sub>bin</sub>  $+$   $-6_{\text{dec}}$ : 1 0 1 0<sub>bin</sub>  $+$   $+2_{\text{dec}}$ : 0 0 1 0<sub>bin</sub>

- Signed Numbers: overflow happens if the most
   significant bit is not the same as every bit to its left
  - e.g., the sum of two positive numbers is a negative result
  - e.g., the sum of two negative numbers is a positive result
  - Adding positive and negative numbers will not overflow

#### Example:

$$+7_{\text{dec}}$$
: 0 1 1 1<sub>bin</sub>  $+7_{\text{dec}}$ : 0 1 1 1<sub>bin</sub>  $+$   $-6_{\text{dec}}$ : 1 0 1 0<sub>bin</sub>  $+$   $+2_{\text{dec}}$ : 0 0 1 0 1 0<sub>bin</sub>

 $-7_{\rm dec}$ : 1001<sub>hin</sub>

 $+1_{dec}$ : 0 0 0  $1_{bin}$ 

#### MIPS Instructions

- Instructions add, addi, and sub may cause exceptions on overflow
  - Software needs to handle exceptions
    - More on this later

- MIPS provides the addu, addiu, and subu instructions that work with unsigned integers and never flag an overflow
  - Other instructions may be executed to detect the overflow

Example 1: Store the unsigned value
 6538305685<sub>dec</sub> in the register file.

1 10000101 10110110 10100000 10010101<sub>bin</sub>

1 85B6 A095<sub>hex</sub>

Example 1: Store the unsigned value
 6538305685<sub>dec</sub> in the register file.

Example 2: add the unsigned 64-bit values in
 (\$t0,\$t1) and (\$t2,\$t3). Store the result in (\$t4,\$t5).

Two 32-bit registers for each value



Example 2: add the unsigned 64-bit values in
 (\$t0,\$t1) and (\$t2,\$t3). Store the result in (\$t4,\$t5).

Two 32-bit registers for each value



### Multiplication Example

- Multi-step process
- □ Every step
  - multiplicand is shifted
  - next bit of multiplier isexamined (also a shifting step)
  - if this bit is 1, shifted multiplicand is added to the product

| Multiplicand<br>Multiplier | X            | 1000 <sub>ten</sub><br>1001 <sub>ten</sub> |  |
|----------------------------|--------------|--------------------------------------------|--|
|                            | 1000         |                                            |  |
|                            | 0000<br>0000 |                                            |  |
|                            |              |                                            |  |
|                            | 1000         |                                            |  |
| -                          |              |                                            |  |

**Product** 

1001000<sub>ten</sub>

### Multiplication Example

#### ■ Multi-step process



| Multiplicand |      | $1000_{ten}$        |  |
|--------------|------|---------------------|--|
| Multiplier   | X    | 1001 <sub>ten</sub> |  |
|              |      |                     |  |
|              | 1000 |                     |  |
|              |      | 0000                |  |
|              | 0000 |                     |  |
|              | 10   | 00                  |  |
| -            |      |                     |  |

1001000<sub>ten</sub>

## Multiplication Algorithm 2

- □ A more efficient algorithm
  - 32-bit ALU and multiplicand is untouched
  - sum keeps shifting right
    - $\blacksquare$  number of bits in product + multiplier = 64,
    - hence, they share a single 64-bit register



## Multiplication Notes

- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
- We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
- The product of two 32-bit numbers can be a 64-bit number
  - □ In MIPS, the product is saved in two 32-bit registers

#### MIPS Instructions

Signed multiplication (mult)

```
mult $$2, $$3 computes the product and stores
    it in two "internal" registers that
        can be referred to as hi and lo

mfhi $$0 moves the value in hi into $$0
mflo $$1 moves the value in lo into $$1
```

Similarly for unsigned multiplication (multu)

```
multu $s2, $s3

mfhi $s0

mflo $s1
```

## Multiplication: Fast Algorithm

- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs — it then has to wait for the result of each add to propagate down — faster because no clock is involved
- Note: high transistor cost



### Division Example

- Multi-step process
  - shift divisor right and compare it with current dividend
    - if divisor is larger, shift 0 as the next bit of the quotient
    - if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

# Division Example

□ Divide  $7_{ten}$  (0000 0111 $_{two}$ ) by  $2_{ten}$  (0010 $_{two}$ )

| Iter | Step           | Quot | Divisor | Remainder |
|------|----------------|------|---------|-----------|
| 0    | Initial values |      |         |           |
| 1    |                |      |         |           |
| 2    |                |      |         |           |
| 3    |                |      |         |           |
| 4    |                |      |         |           |
| 5    |                |      |         |           |

# Division Example

 $\square$  Divide  $7_{\text{ten}}$  (0000 0111<sub>two</sub>) by  $2_{\text{ten}}$  (0010<sub>two</sub>)

| Iter | Step                           | Quot | Divisor   | Remainder |
|------|--------------------------------|------|-----------|-----------|
| 0    | Initial values                 | 0000 | 0010 0000 | 0000 0111 |
| 1    | Rem = Rem – Div                | 0000 | 0010 0000 | 1110 0111 |
|      | Rem < 0 → +Div, shift 0 into Q | 0000 | 0010 0000 | 0000 0111 |
|      | Shift Div right                | 0000 | 0001 0000 | 0000 0111 |
| 2    | Same steps as 1                | 0000 | 0001 0000 | 1111 0111 |
|      |                                | 0000 | 0001 0000 | 0000 0111 |
|      |                                | 0000 | 0000 1000 | 0000 0111 |
| 3    | Same steps as 1                | 0000 | 0000 0100 | 0000 0111 |
| 4    | Rem = Rem – Div                | 0000 | 0000 0100 | 0000 0011 |
|      | Rem >= 0 → shift 1 into Q      | 0001 | 0000 0100 | 0000 0011 |
|      | Shift Div right                | 0001 | 0000 0010 | 0000 0011 |
| 5    | Same steps as 4                | 0011 | 0000 0001 | 0000 0001 |