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Overview

¨ This lecture
¤ Overflow for addition/subtraction
¤ Multiplication
¤ Division



Addition/Subtraction Overflow

¨ Unsigned Numbers: overflow happens when the last 
carry (1) cannot be accommodated.
¤ i.e., there is not enough memory bits to represent the 

number

Example:

7dec:   0 1 1 1bin

10dec:   1 0 1 0bin

7dec:   0 1 1 1bin

2dec:   0 0 1 0bin



Addition/Subtraction Overflow

¨ Unsigned Numbers: overflow happens when the last 
carry (1) cannot be accommodated.
¤ i.e., there is not enough memory bits to represent the 

number

Example:

7dec:   0 1 1 1bin

10dec:   1 0 1 0bin

1dec:   0 0 0 1bin

7dec:   0 1 1 1bin

2dec:   0 0 1 0bin

9dec:   1 0 0 1bin



Addition/Subtraction Overflow

¨ Signed Numbers: overflow happens if the most 
significant bit is not the same as every bit to its left

n e.g., the sum of two positive numbers is a negative result
n e.g., the sum of two negative numbers is a positive result

¤ Adding positive and negative numbers will not overflow

Example:

+7dec:   0 1 1 1bin

-6dec:   1 0 1 0bin

+7dec:   0 1 1 1bin

+2dec:   0 0 1 0bin



Addition/Subtraction Overflow

¨ Signed Numbers: overflow happens if the most 
significant bit is not the same as every bit to its left

n e.g., the sum of two positive numbers is a negative result
n e.g., the sum of two negative numbers is a positive result

¤ Adding positive and negative numbers will not overflow

Example:

+7dec:   0 1 1 1bin

-6dec:   1 0 1 0bin

+1dec:   0 0 0 1bin

+7dec:   0 1 1 1bin

+2dec:   0 0 1 0bin

-7dec:   1 0 0 1bin



MIPS Instructions

¨ Instructions add, addi, and sub may cause 
exceptions on overflow
¤ Software needs to handle exceptions

n More on this later

¨ MIPS provides the addu, addiu, and subu
instructions that work with unsigned integers and 
never flag an overflow
¤ Other instructions may be executed to detect the 

overflow



Dealing with >32-bit

¨ Example 1: Store the unsigned value 
6538305685dec in the register file.

1 10000101 10110110 10100000 10010101bin 1 85B6 A095hex



Dealing with >32-bit

¨ Example 1: Store the unsigned value 
6538305685dec in the register file.

1 10000101 10110110 10100000 10010101bin 1 85B6 A095hex

lui $t1, 0x85B6
ori $t1, $t1, 0xA095
ori $t0, $zero, 1

64 bits
Two 32-bit registers ($t0 and $t1)

$t0 $t1 



Dealing with >32-bit

¨ Example 2: add the unsigned 64-bit values in 
($t0,$t1) and ($t2,$t3). Store the result in ($t4,$t5).

addu $t5, $t1, $t3
addu $t4, $t0, $t2

64 bits
Two 32-bit registers for each value

$t0 $t1 

$t2 $t3 

$t4 $t5 



Dealing with >32-bit

¨ Example 2: add the unsigned 64-bit values in 
($t0,$t1) and ($t2,$t3). Store the result in ($t4,$t5).

64 bits
Two 32-bit registers for each value

$t0 $t1 

$t2 $t3 

$t4 $t5 

addu $t5, $t1, $t3
addu $t4, $t0, $t2
sltu $t6, $t5, $t1
sltu $t7, $t5, $t3
beq $t6, $zero, OK
beq $t7, $zero, OK
addiu $t4, $t4, 1

OK: …



Multiplication Example

¨ Multi-step process
¨ Every step

¤ multiplicand is shifted
¤ next bit of multiplier is 

examined (also a shifting step)
¤ if this bit is 1, shifted 

multiplicand is added to the 
product

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten



Multiplication Example

¨ Multi-step process
¨ Every step

¤ multiplicand is shifted
¤ next bit of multiplier is 

examined (also a shifting step)
¤ if this bit is 1, shifted 

multiplicand is added to the 
product

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten



Multiplication Algorithm 2

¨ A more efficient algorithm
¤ 32-bit ALU and multiplicand is untouched
¤ sum keeps shifting right

n number of bits in product + multiplier = 64,
n hence, they share a single 64-bit register



Multiplication Notes

¨ The previous algorithm also works for signed numbers 
(negative numbers in 2’s complement form)

¨ We can also convert negative numbers to positive, 
multiply the magnitudes, and convert to negative if 
signs disagree

¨ The product of two 32-bit numbers can be a 64-bit 
number
¤ In MIPS, the product is saved in two 32-bit registers



MIPS Instructions

¨ Signed multiplication (mult)

¨ Similarly for unsigned multiplication (multu)

mult $s2, $s3

mfhi $s0
mflo $s1

computes the product and stores
it in two “internal” registers that
can be referred to as  hi  and  lo

moves the value in  hi  into $s0
moves the value in  lo  into $s1

multu $s2, $s3

mfhi $s0
mflo $s1



Multiplication: Fast Algorithm

¨ The previous algorithm requires a 
clock to ensure that the earlier 
addition has completed before 
shifting

¨ This algorithm can quickly set up 
most inputs – it then has to wait 
for the result of each add to 
propagate down – faster 
because no clock is involved

¨ Note: high transistor cost



Division Example

¨ Multi-step process
¤ shift divisor right and compare it with current dividend

n if divisor is larger, shift 0 as the next bit of the quotient
n if divisor is smaller, subtract to get new dividend and shift 1 

as the next bit of the quotient

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder



Division Example

¨ Divide 7ten (0000 0111two)  by  2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values
1

2

3

4

5



Division Example

¨ Divide 7ten (0000 0111two)  by  2ten (0010two)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 0000 0111
1 Rem = Rem – Div

Rem < 0 è +Div, shift 0 into Q
Shift Div right

0000
0000
0000

0010 0000
0010 0000
0001 0000

1110 0111
0000 0111
0000 0111

2 Same steps as 1 0000
0000
0000

0001 0000
0001 0000
0000 1000

1111 0111
0000 0111
0000 0111

3 Same steps as 1 0000 0000 0100 0000 0111
4 Rem = Rem – Div 

Rem >= 0 è shift 1 into Q
Shift Div right

0000
0001
0001

0000 0100
0000 0100
0000 0010

0000 0011
0000 0011
0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001


