NUMERICAL OPERATIONS

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , .
U SRt ATNT CS/ECE 3810: Computer Organization

Overview
"

This lecture
O Overflow for addition/subtraction
O Multiplication

O Division

Addition /Subtraction Overflow
S

Unsigned Numbers: overflow happens when the last
carry (1) cannot be accommodated.

O i.e., there is not enough memory bits to represent the
number

Example:
lgec: 0111, (4ec: 0111,

+ 104 1010, + 24 0010,

Addition /Subtraction Overflow
S

Unsigned Numbers: overflow happens when the last
carry (1) cannot be accommodated.

O i.e., there is not enough memory bits to represent the

number
Example:
Taoe: 0111, Toee: 01114,
+ 104 1010, + 24 0010,

Tgec: 000 14, Qec: 100 1y,

Addition /Subtraction Overflow
S

Signed Numbers: overflow happens if the most
significant bit is not the same as every bit to its left

e.g., the sum of two positive numbers is a negative result

e.g., the sum of two negative numbers is a positive result

O Adding positive and negative numbers will not overflow
Example:
+4ee: 0111, +4ee: 0111,

+ 64 1010, + +24. 0010,

Addition /Subtraction Overflow
S

Signed Numbers: overflow happens if the most
significant bit is not the same as every bit to its left

e.g., the sum of two positive numbers is a negative result

e.g., the sum of two negative numbers is a positive result

O Adding positive and negative numbers will not overflow
Example:
+4ee: 0111, +4ee: 0111,

+ 64 1010, + +24. 0010,

+14ec: 000 1, “T4ee: 100 1y,

MIPS Instructions

Instructions add, addi, and sub may cause
exceptions on overflow

O Software needs to handle exceptions

More on this later

MIPS provides the addu, addiu, and subu
instructions that work with unsigned integers and

never flag an overflow

O Other instructions may be executed to detect the
overflow

Dealing with >32-bit
-

Example 1: Store the unsigned value
6538305685, in the register file.

110000101 10110110 10100000 10010101y, 1 85B6 A095,

Dealing with >32-bit
-

Example 1: Store the unsigned value
6538305685, in the register file.

110000101 10110110 10100000 10010101y, 1 85B6 A095,

$0 : St lui $tl, 0x85B6

ori S$tl, $tl1, O0xA095
> ori S$t0, S$zero, 1

A

64 bits
Two 32-bit registers ($t0 and $t1)

Dealing with >32-bit

Example 2: add the unsigned 64-bit values in
($t0,$t1) and ($12,$t3). Store the result in ($t4,5t5).

Two 32-bit registers for each value

‘ 64 bits

$0 : St addu $t5, $tl, $t3
. addu $t4, St0, S$t2

$t2 $t3

$t4 _ $t5

Dealing with >32-bit

Example 2: add the unsigned 64-bit values in
($t0,$t1) and ($12,$t3). Store the result in ($t4,5t5).

Two 32-bit registers for each value
64 bits

$t0 : $t1 addu $t5, $tl, $t3

. . addu $t4, $t0, $t2
$t2 $t3 sltu $t6, $t5, Stl
. . sltu $t7, $t5, $t3
beq St6, S$zero, OK
beq St7, S$zero, OK
$t4 $t5 addiu $t4, St4, 1
. . OK: ..

Multiplication Example
e

Multi-step process
Multiplicand 10004,

Multiplier — x 1001,
O multiplicand is shifted

Every step

O next bit of multiplier is 1000
examined (also a shifting step) 0000
0000

o if this bit is 1, shifted
multiplicand is added to the

product Product 10010004,

Multiplication Example

Multi-step process

- Multiplicand 10004
Multiplicand —— MU|t|p||er X 1 OO 1 ten
164 L
. . 1000
A Multiplier 0000

Shift right
32 bits 0000
Product) Control test) ' 1 OOO
Write

64 bits

Product 1001000,

Multiplication Algorithm 2

A more efficient algorithm
O 32-bit ALU and multiplicand is untouched

O sum keeps shifting right
number of bits in product + multiplier = 64,

hence, they share a single 64-bit register

Multiplicand

_l 132 bits
‘<

N

32-bit ALU

—_—

Shift right Control
Write test

64 bits A

Product

Multiplication Notes
e

The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

We can also convert negative numbers to positive,
multiply the magnitudes, and convert to negative if
signs disagree

The product of two 32-bit numbers can be a 64-bit
number
O In MIPS, the product is saved in two 32-bit registers

MIPS Instructions
-

Signed multiplication (mult)

mult $s2, $s3 computes the product and stores
it in two “internal” registers that
can be referred to as hi and lo

mfhi $s0 moves the value in hi into $s0
mflo $sl moves the value in lo into $s1

Similarly for unsigned multiplication (multu)

multu Ss2, $s3

mfhi Ss0
mflo Ssl

Multiplication: Fast Algorithm

Mplieet « Mcand Mplierd « Mcand

The previous algorithm requires o | wmt
clock to ensure that the earlier \/
addition has completed before mé.m\wx—/
shifting | wwed

- N

. . o W-M‘cm‘x_/bﬂ

This algorithm can quickly set up .
most inputs — it then has to wait S
for the result of each add to \—{t

propagate down — faster
because no clock is involved

Note: high transistor cost | =t

Productfd..32 Product 31 --- Preduct2 Product! ProductD

Division Example
-

Multi-step process

O shift divisor right and compare it with current dividend

if divisor is larger, shift O as the next bit of the quotient

if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

1001, Quotient
Divisor 1000, | 1001010, Dividend
-1000
10
101
1010
-1000
10¢en Remainder

Division Example

[
Divide 7., (0000 O111,,.) by 2,,(0010,,,)

ten two

Iter Step Quot Divisor | Remainder

0 Initial values

1

Division Example
-

Divide 7,., (0000 0111,,.) by 2,...(0010,,)

Iter Step Quot Divisor | Remainder
0 Initial values 0000 | 0010 0000 | 0000 0111
1 Rem = Rem — Div 0000 | 0010 0000 | 1110 0111

Rem < 0 = +Div, shift 0 into Q 0000 | 0010 0000 | 0000 0111

Shift Div right 0000 | 0001 0000 | 0000 0111

2 Same steps as 1 0000 | 0001 0000 | 1111 0111
0000 | 0001 0000 | 0000 0111

0000 | 0000 1000 | 0000 0111

3 Same steps as 1 0000 | 0000 0100 | 0000 0111
4 Rem = Rem — Div 0000 | 0000 0100 | 0000 0011
Rem >= 0 = shift 1 into Q 0001 | 0000 0100 | 0000 0011

Shift Div right 0001 | 0000 0010 | 0000 0011

) Same steps as 4 0011 | 0000 0001 | 0000 0001

