
NUMBER OPERATIONS

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Binary representation
¤ Negative numbers
¤ Basic operations

Binary Representation

¨ The binary number

¨ The number quantity (decimal)

¨ A 32-bit word can represent 232 numbers between 0
and 232-1 (4,294,967,295)
¤ Represent only positive numbers
¤ Also known as the unsigned representation

Most significant bit Least significant bit

11011000 00010101 00101110 11100111

1 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20 = 3625266919

Negative Numbers

¨ The binary number

¨ Sign-magnitude representation
¤ 1. Quantify the magnitude (31 bits)

¤ 2. Determine the sign based in the sign bit

¨ Example: 3-bit sing-magnitude
¤ How many numbers
¤ How to do arithmetic

Sign bit

11011000 00010101 00101110 11100111

1 x 230 + 0 x 229 + … + 1 x 20 = 1477783271

-1477783271

Negative Numbers

¨ The binary number

¨ 1’s complement: -x is represented by inverting x’s bits
¤ 1. Invert the bits if the sign bit is set

¤ 2. Quantify the magnitude (31 bits)

¨ Example: 3-bit 1’s complement
¤ How many numbers
¤ How to do arithmetic

Sign bit

11011000 00010101 00101110 11100111

-1 x (1 x 229 + … + 0 x 20) = -669700376

00100111 11101010 11010001 00011000

Negative Numbers

¨ The binary number

¨ Sign-magnitude and 1’s complement are not favorable
¤ Relatively complex implementation of arithmetic operations

¨ A 32-bit word represents 232-1 numbers between -
231+1 and +231-1
¤ Two different representations for zero

Sign bit

11011000 00010101 00101110 11100111

Negative Numbers

¨ The binary number

¨ 2’s complement representation
¤ Give the sign bit a negative weight

¨ Example: 3-bit 2’s complement
¤ How many numbers
¤ How to do arithmetic

Sign bit

11011000 00010101 00101110 11100111

1 x -231 + 1 x 230 + 0 x 229 + … + 1 x 20 = -669700377

Negative Numbers

¨ The binary number

¨ 2’s complement representation
¤ Give the sign bit a negative weight

¨ A 32-bit word represents 232 numbers between -231
and +231-1.
¤ No repeated numbers and simple arithmetic implementation

Sign bit

11011000 00010101 00101110 11100111

1 x -231 + 1 x 230 + 0 x 229 + … + 1 x 20 = -669700377

Example: 2’s Complement

¨ Compute the 32-bit 2’s complement representations
for the following decimal numbers:
¤ 5, -5, -6

Example: 2’s Complement

¨ Compute the 32-bit 2’s complement representations
for the following decimal numbers:
¤ 5, -5, -6

¨ Given -5, verify that negating and adding 1 yields
the number 5

¨

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Example

¨ All 32-bit 2’s complement representations

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231
1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

int num = 0;
do {
num++;

} while(num != 0);

Signed and Unsigned

¨ The hardware recognizes two formats:

¨ Unsigned
¤ All numbers are positive, a 1 in the most significant bit just means it is a

really large number
¤ Example: the unsigned int declaration in C/C++

¨ Signed
¤ Numbers can be +/- , a 1 in the MSB means the number is negative
¤ Example: the signed int or int declaration in C/C++

¨ Why would I need both?
¤ To represent twice as many numbers when we’re sure that we don’t need

negatives

Example: MIPS Instructions

¨ Example: consider a comparison instruction
¤ slt $t0, $t1, $zero

¨ and $t1 contains the 32-bit number
¤ 11110111 11001010 00010100 00011110

¨ What gets stored in $t0?

Example: MIPS Instructions

¨ Example: consider a comparison instruction
¤ slt $t0, $t1, $zero

¨ and $t1 contains the 32-bit number
¤ 11110111 11001010 00010100 00011110

¨ What gets stored in $t0?

whether $t1 is a signed or unsigned number
the compiler/programmer must track this and accordingly
use either slt or sltu

slt $t0, $t1, $zero #stores 1 in $t0
sltu $t0, $t1, $zero #stores 0 in $t0

Recall: Dealing with Characters

¨ Instructions are also provided to deal with byte-
sized and half-word quantities: lb (load-byte), sb,
lh, sh

¨ Example: loading a byte from memory
¤ Is the byte signed or unsigned?

Memory: … …

$t0:

$gp

Sign Extension

¨ Signed 8-/16-bit numbers must be converted into
32-bit signed numbers
¤ Example:

n addi $s0, $zero, 0x8000
n addi $s0, $zero, 0x4000

¨ Conversion: take the most significant bit and use it
to fill up the additional bits on the left

11111111 11111111 10000000 00000000 = -32768

00000000 00000000 01000000 00000000 = 16384

Unsigned Conversion

¨ Unsigned 8-/16-bit numbers must be converted into
32-bit signed numbers
¤ Example:

n addiu $s0, $zero, 0x8000
n addiu $s0, $zero, 0x4000

¨ Conversion: fill up the additional bits on the left with
zeroes

00000000 00000000 10000000 00000000 = 32768

00000000 00000000 01000000 00000000 = 16384

Addition and Subtraction

¨ Addition is similar to decimal arithmetic

¨ For subtraction, simply add the negative number
¤ 4-bit example: 6 – 5 = 6 + (-5)

0 1 1 0
+ 1 0 1 1

Overflows

¨ Note: machines have limited numbers of bits for
representing each number

¨ For an unsigned number, overflow happens when the
last carry (1) cannot be accommodated

¨ For a signed number, overflow happens when the most
significant bit is not the same as every bit to its left
¤ when the sum of two positive numbers is a negative result
¤ when the sum of two negative numbers is a positive result
¤ The sum of a positive and negative number will never

overflow

