INSTRUCTION SET ARCHITECTURE

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , o
U S A CS/ECE 3810: Computer Organization

Overview
"

This lecture

O Constant values

O Immediate operands
O Memory instructions

O Instruction format

Constant Values
-

Constant values are defined /used in code

O Known to the programmer

O Zero is commonly used

glint main() { CPU
9 int i, j;
10 for() = 0; J <10; J ++) {
11 for(i =0; 1 < mem_size > 2; 1 += 16) { @
12 pli] = 55;
13 }
14 for(i =0; 1 < mem_size >> 2; 1 += 16) {
15 qli] = 56;
16 }
17 }
18 return 0; Memory
19/}
How to handle constants in the ISA?

Immediate Operand

e
An instruction may require a constant as input

An immediate instruction uses a constant number as one of
the inputs (instead of a register operand)

Putting a constant in a register requires addition to register
$zero (a special register that always has zero in it) -- since

every instruction requires at least one operand to be o
register

For example, putting the constant 1000 into a register:
O addi $s0, $zero, 1000

Memory Instruction Format
S

The format of a load instruction:

destination register CPU
1 source register
lw $t0, 8(S$t3) ﬁ

any register

a constant added to the register in brackets

Memory

Memory Instruction Format
S

The format of a load instruction:

source register CPU
1 source register
sw $t0, 8(St3) II

any register

a constant added to the register in brackets

Memory

Example MIPS Translation

"
int a, b, ¢, d[10]

Memory

1000
Task: bring a, b, ¢, d[0], and d[1] to $s1-$s5

Example MIPS Translation

"
int a, b, ¢, d[10]

Memory

1000
Task: bring a, b, ¢, d[0], and d[1] to $s1-$s5

addi $t0, $zero, 1000 # put base address 1000 in $tO;
$zero is a register that always equals zero

Example MIPS Translation

"
int a, b, ¢, d[10]

Memory

1000
Task: bring a, b, ¢, d[0], and d[1] to $s1-$s5

addi $t0, $zero, 1000 # put base address 1000 in $tO;
$zero is a register that always equals zero

lw $s1, 0($t0) # brings value of a into register $s1
lw $s2, 4($t0) # brings value of b into register $s2
lw $s3, 8($t0) # brings value of ¢ into register $s3
lw $s4, 12($t0) # brings value of d[0] into register $s4

lw $s5, 16(5t0) # brings value of d[1] into register $s5

Example MIPS Translation
-

Convert the following C code to assembly
Od[3] =d[2] + q;

Memory

1000

Example MIPS Translation
-

Convert the following C code to assembly
Od[3] =d[2] + q;

Memory

1000

addi $t0, $zero, 1000 # put base address 1000 in $tO;
$zero is a register that always equals zero

lw $s0, 0($t0) # ais brought into $s0
lw $s1, 20(5t0) # d[2] is brought into $s1
add 5$t1, $s0, $s1 # the sum is in $t1

sw $t1, 24($t0) # $t1is stored into d[3]

Instruction Formats

Instructions are represented as 32-bit numbers

O Each instruction word has multiple fields

MIPS Instruction Types

CPU
e 0=
decoder
add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000 II

00010010101...0010
10001001001...1010
11001001001...0001

Memory

Instruction Formats

Instructions are represented as 32-bit numbers

O Each instruction word has multiple fields

MIPS Instruction Types

CPU
decoder
add $t0, $s1, $s2 o
000000 10001 10010 01000 00000 100000 II
op] rs ’ rt ‘ rd ’ shamt ‘ funct ‘000100101010010
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 10001001001...1010
opcode firstreg. second dest shift ~ function | 11001001001...0001
source reg. reg. amount
source Memory

Instruction Formats

Instructions are represented as 32-bit numbers

O Each instruction word has multiple fields

MIPS Instruction Types

O R-type
add $t0, $s1, $s2
O |-type

lw $t0, 32($t1)

100011 01001 01000 0000000000100000

CPU

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

00010010101...0010
10001001001...1010
11001001001...0001

Memory

Logical Operations
-

Bitwise logical operations

Shift left S11
Shift right >> >> Srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor
Shift

o sll $12, $50, 4
O srl $t2, $s0, 4

Logical Operations
-

Bitwise logical operations

Shift left sll
Shift right > >>0 sri
Bit-by-bit AND & & and, andi
Bit-by-bit NOT ~ ~ nor
Shift
AND

Oand $t0, $t1, $t2

Logical Operations
-

Bitwise logical operations

Shift left S11
Shift right >> >> sr
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor
Shift
AND
OR

O or $t0, $t1, $12

Logical Operations

Bitwise logical operations

Shift left sl
Shift right > >0 sri
Bit-by-bit AND & & and, andi
Bit-by-bit NOT ~ ~ nor
Shift
AND
OR
NOT

O nor $t0, $t1, $t2

