
INSTRUCTION SET ARCHITECTURE

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Constant values
¤ Immediate operands
¤ Memory instructions
¤ Instruction format

Constant Values

¨ Constant values are defined/used in code
¤ Known to the programmer
¤ Zero is commonly used

Memory

CPU

How to handle constants in the ISA?

Immediate Operand

¨ An instruction may require a constant as input

¨ An immediate instruction uses a constant number as one of
the inputs (instead of a register operand)

¨ Putting a constant in a register requires addition to register
$zero (a special register that always has zero in it) -- since
every instruction requires at least one operand to be a
register

¨ For example, putting the constant 1000 into a register:
¤ addi $s0, $zero, 1000

Memory Instruction Format

¨ The format of a load instruction:

destination register
source register

lw $t0, 8($t3)

any register

a constant added to the register in brackets

Memory

CPU

Memory Instruction Format

¨ The format of a load instruction:

source register
source register

sw $t0, 8($t3)

any register

a constant added to the register in brackets

Memory

CPU

Example MIPS Translation

¨ int a, b, c, d[10]

¨ Task: bring a, b, c, d[0], and d[1] to $s1-$s5

Memory

1000

Example MIPS Translation

¨ int a, b, c, d[10]

¨ Task: bring a, b, c, d[0], and d[1] to $s1-$s5

Memory

1000

addi $t0, $zero, 1000 # put base address 1000 in $t0;
$zero is a register that always equals zero

Example MIPS Translation

¨ int a, b, c, d[10]

¨ Task: bring a, b, c, d[0], and d[1] to $s1-$s5

Memory

1000

addi $t0, $zero, 1000 # put base address 1000 in $t0;
$zero is a register that always equals zero

lw $s1, 0($t0) # brings value of a into register $s1
lw $s2, 4($t0) # brings value of b into register $s2
lw $s3, 8($t0) # brings value of c into register $s3
lw $s4, 12($t0) # brings value of d[0] into register $s4
lw $s5, 16($t0) # brings value of d[1] into register $s5

Example MIPS Translation

¨ Convert the following C code to assembly
¤ d[3] = d[2] + a;

Memory

1000

Example MIPS Translation

¨ Convert the following C code to assembly
¤ d[3] = d[2] + a;

Memory

1000
addi $t0, $zero, 1000 # put base address 1000 in $t0;

$zero is a register that always equals zero

lw $s0, 0($t0) # a is brought into $s0
lw $s1, 20($t0) # d[2] is brought into $s1
add $t1, $s0, $s1 # the sum is in $t1
sw $t1, 24($t0) # $t1 is stored into d[3]

Instruction Formats

¨ Instructions are represented as 32-bit numbers
¤ Each instruction word has multiple fields

¨ MIPS Instruction Types
¤ R-type

n add $t0, $s1, $s2

Memory

CPU

00010010101…0010
10001001001…1010
11001001001…0001
…

decoder

000000 10001 10010 01000 00000 100000

Instruction Formats

¨ Instructions are represented as 32-bit numbers
¤ Each instruction word has multiple fields

¨ MIPS Instruction Types
¤ R-type

n add $t0, $s1, $s2

Memory

CPU

00010010101…0010
10001001001…1010
11001001001…0001
…

decoder

opcode first reg.
source

second
reg.

source

dest
reg.

shift
amount

function

000000 10001 10010 01000 00000 100000

Instruction Formats

¨ Instructions are represented as 32-bit numbers
¤ Each instruction word has multiple fields

¨ MIPS Instruction Types
¤ R-type

n add $t0, $s1, $s2

¤ I-type
n lw $t0, 32($t1)

Memory

CPU

00010010101…0010
10001001001…1010
11001001001…0001
…

decoder

100011 01001 01000 0000000000100000

Logical Operations

¨ Bitwise logical operations

¨ Shift
¤ sll $t2, $s0, 4
¤ srl $t2, $s0, 4

Logical Operations

¨ Bitwise logical operations

¨ Shift
¨ AND

¤and $t0, $t1, $t2

Logical Operations

¨ Bitwise logical operations

¨ Shift
¨ AND
¨ OR

¤ or $t0, $t1, $t2

Logical Operations

¨ Bitwise logical operations

¨ Shift
¨ AND
¨ OR
¨ NOT

¤ nor $t0, $t1, $t2

