
INSTRUCTION SET ARCHITECTURE

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Instruction Operands
¤ Registers
¤ Basics of Memory
¤ Memory Access Instructions

Recall: Example MIPS Instruction

¨ Translate this one

¨ Assembly

¨ In summary
¤ operations are not necessarily associative and

commutative
¤ More instructions than C statements
¤ Usually fixed number of operands per instruction

add f, g, h
sub f, f, i
sub f, f, j

add t0, g, h
add t1, i, j
sub f, t0, t1

f = (g + h) – (i + j);

Operands

¨ In a high level language, each variable is a location
in memory

¨ You may define a large number of operands
(variables) in a high-level program

¨ The number of operands in assembly is fixed
(registers)

MemoryCPU Bus

Registers

¨ To simplify hardware, let’s require each instruction
(add, sub) only operate on registers

¨ For example
¤ MIPS ISA has 32 registers
¤ x86 has 8 registers

¨ 32-bit registers
¤ Modern 64-bit architectures

¨ Every 32-bit stores a word
Memory

CPU

Bu
s

RegistersALU

Register File

¨ A set of registers in the processor core
¤ An index is used to identify each register

¨ For more readability
¤ registers are partitioned as $s0-$s7 (C/Java

variables), $t0-$t9 (temporary variables)…

RF
0
1
2
3
4
5
6

+

add $3, $4, $1

add a, b, c

$3 ß $4 + $1

Memory Access

¨ Values must be fetched from memory before (add
and sub) instructions can operate on them

¨ Memory operations
¤ Read

n Returns data stored at location address

¤ Write
n Stores data at location address

Memory

da
ta

ad
dr

es
s

re
ad

/w
rit

e

Memory Access

¨ Values must be fetched from memory before (add and
sub) instructions can operate on them

¨ Load word
¤ lw $t0, memory-address

¨ Store word
¤ sw $t0, memory-address

¨ How is memory-address determined?

Memory

da
ta

ad
dr

es
s

re
ad

/w
rit

e CPU

Memory Address

¨ The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can
fill in the appropriate mem-address for load-store
instructions

int a, b, c, d[10]

Memory

Memory Address

¨ The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can
fill in the appropriate mem-address for load-store
instructions

int a, b, c, d[10]

Memory

Base address

Memory Address

¨ Each word is referred to with the address of a
single byte

Memory

c = 8163 à (00000000 00000000 00011111 11100011)bin

int a, b, c, d[10]

Memory Address

¨ Each word is referred to with the address of a
single byte

Memory

c = 8163 à (00000000 00000000 00011111 11100011)bin

à (00 00 1F E3)hex = 0X00001FE3

int a, b, c, d[10]

Memory Address

¨ Each word is referred to with the address of a
single byte
¤ Big Endian

n MIPS, IBM 360/370,
n Motorola 68k, Sparc,
n HP PA, ARMv8

Memory

c = 8163 à (00000000 00000000 00011111 11100011)bin

à (00 00 1F E3)hex = 0X00001FE3

x
x+1
x+2
x+3

00 00 1F E3

Memory Address

¨ Each word is referred to with the address of a
single byte
¤ Little Endian

n Intel x86, DEC VAX
n DEC Alpha

Memory

c = 8163 à (00000000 00000000 00011111 11100011)bin

à (00 00 1F E3)hex = 0X00001FE3

x
x+1
x+2
x+3

00 00 1F E3

