
INSTRUCTION SET ARCHITECTURE

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Computer Organization

¨ Classic components of a computing system

CPU

Computer Organization

¨ Classic components of a computing system

CPU
Memory

Computer Organization

¨ Classic components of a computing system

CPU
Memory

Input

Computer Organization

¨ Classic components of a computing system

CPU
Memory

Input

Output

Computer Organization

¨ Classic components of a computing system

CPU
Memory

Input

Output

Algorithm

Computer Organization

¨ Classic components of a computing system

CPU
Memory

Input

Output

Algorithm

Instruction Set Architecture

¨ The key to program/use a microprocessor
¤ The language of the hardware defines the

hardware/software interface
¤ ISA is a contract between software and hardware

HardwareSoftware

Instruction Set Architecture

¨ The key to program/use a microprocessor
¤ The language of the hardware defines the

hardware/software interface
¤ ISA is a contract between software and hardware
¤ Stored-program concept (von Neumann)

Instruction Set Architecture

¨ A program (in say, C) is compiled into an executable that is
composed of machine instructions

¨ Java programs are converted into portable bytecode that is
converted into machine instructions during execution (just-in-
time compilation)

Instruction Set Architecture

¨ A program (in say, C) is compiled into an executable that is
composed of machine instructions

¨ Java programs are converted into portable bytecode that is
converted into machine instructions during execution (just-in-
time compilation)

Program

Storage
Decode

Execute

Fetch

Data Representation

¨ Smallest unit of representing information in
conventional computers is bit
¤ Only two states: 0 and 1

Data Representation

¨ Smallest unit of representing information in
conventional computers is bit
¤ Only two states: 0 and 1

¨ Multibit representation units are used to increase
the number of states
¤ Every group of 8 bits is called a byte representing 256

states

Data Representation

¨ Smallest unit of representing information in
conventional computers is bit
¤ Only two states: 0 and 1

¨ Multibit representation units are used to increase
the number of states
¤ Every group of 8 bits is called a byte representing 256

states
¤ Multiple bytes form a word

n 4-byte word or
n 8-byte word in more modern processors

Data Conversion

¨ Decimal is the most human-friendly base for presenting
numbers
¤ Example: 8163

¨ Convert decimal to binary (machine-friendly)
¤ Through a series of divisions
¤ Example: 1111111100011

Data Conversion

¨ Decimal is the most human-friendly base for presenting
numbers
¤ Example: 8163

¨ Convert decimal to binary (machine-friendly)
¤ Through a series of divisions
¤ Example: 1111111100011

Find the binary representation of 8163 through a series of divisions by 2.

Answer: 1111111100011bin

Quotient 4081 2040 1020 510 255 127 63 31 15 7 3 1 0
Remainder 1 1 0 0 0 1 1 1 1 1 1 1 1

Data Conversion

¨ Decimal to Hexadecimal
¤ Example: 8163

Find the hexadecimal representation of 8163 through a series of divisions by 16.

Quotient Remainder
510 3
31 14
1 15
0 1

E

F

Value Hex Digit
0 0
.. …
9 9

10 A
11 B
12 C
13 D
14 E
15 F

Answer: 1FE3hex

Data Conversion

¨ Decimal to Octal
¤ Example: 8163

Find the hexadecimal representation of 8163 through a series of divisions by 8.

Answer: 17743oct

Quotient Remainder

1020 3

127 4

15 7

1 7

0 1

Conversion To Decimal

¨ From Binary (1111111100011)
¤ 1x20 + 1x21 + 0x22 + 0x23 + 0x24 + 1x25 + 1x26 +

1x27 + 1x28 + 1x29 + 1x210 + 1x211 + 1x212 = 8163

Conversion To Decimal

¨ From Binary (1111111100011)
¤ 1x20 + 1x21 + 0x22 + 0x23 + 0x24 + 1x25 + 1x26 +

1x27 + 1x28 + 1x29 + 1x210 + 1x211 + 1x212 = 8163

¨ From Hexadecimal (1FE3)
¤ 3x160 + Ex161 + Fx162 + 1x163 = 3x160 + 14x161

+ 15x162 + 1x163 = 8163

Conversion To Decimal

¨ From Binary (1111111100011)
¤ 1x20 + 1x21 + 0x22 + 0x23 + 0x24 + 1x25 + 1x26 +

1x27 + 1x28 + 1x29 + 1x210 + 1x211 + 1x212 = 8163

¨ From Hexadecimal (1FE3)
¤ 3x160 + Ex161 + Fx162 + 1x163 = 3x160 + 14x161

+ 15x162 + 1x163 = 8163

¨ From Octal (17743)
¤ 3x80 + 4x81 + 7x82 + 7x83 + 1x84 = 8163

Instruction Set Architecture

¨ keep the hardware simple – the chip must only
implement basic primitives and run fast

¨ keep the instructions regular – simplifies the
decoding/scheduling of instructions

¨ MIPS instruction set architecture
¤ Other examples are ARM, x86, IBM power, etc.

¨ Complex vs. simple instructions
¤ Which one is better?

Example MIPS Instruction

¨ C code
¤ High level language

¨ Assembly code
¤ Human friendly

machine instruction

¨ Machine code
¤ Hardware friendly

machine instruction
00000010001100100100000000100000

add a, b, c # a is the sum of b and c

a = b + c;

Example MIPS Instruction

¨ Translate the following C code to assembly

a = b + c + d + e;

Example MIPS Instruction

¨ Translate the following C code to assembly

¨ Assembly
a = b + c + d + e;

add a, b, c
add a, a, d
add a, a, e

add a, b, c
add f, d, e
add a, a, f

Example MIPS Instruction

¨ Translate the following C code to assembly

¨ Assembly

¨ Translate this one

a = b + c + d + e;

add a, b, c
add a, a, d
add a, a, e

add a, b, c
add f, d, e
add a, a, f

f = (g + h) – (i + j);

Example MIPS Instruction

¨ Translate this one

¨ Assembly

¨ In summary
¤ operations are not necessarily associative and

commutative
¤ More instructions than C statements
¤ Usually fixed number of operands per instruction

add f, g, h
sub f, f, i
sub f, f, j

add t0, g, h
add t1, i, j
sub f, t0, t1

f = (g + h) – (i + j);

