MEASURING PERFORMANCE

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , o
U S A CS/ECE 3810: Computer Organization




Overview
"

This lecture

O Levels of program code
O Chips process

O Performance

O Design principles



Below Your Program

Application software
O Written in high-level language

System software
O Compiler: translates HLL code to machine code

O Operating System: service code
Handling input /output
Managing memory and storage
Scheduling tasks and sharing resources

Hardware
O Processor, memory, |/O controllers




Levels of Program Code

. swap(int v[]1, int k)
High-level language (int temp:
. temp = v[kl];
O Level of abstraction closer to problem vIk] = v[k+17;
domain vIk+1] = temp;

}
O Provides for productivity and

portability



Levels of Program Code
e

swap(int v[], int k)

High-level language (int temp:
. temp = v[k];
O Level of abstraction closer to problem vIk] = v[k+17;

domain vik+1] = temp;
)

O Provides for productivity and

portability @@

Hardware representation TP et sz, ss.a
add $2, $4,%2
O Binary digits (bits) 3
o o SW $16, 0($2
O Encoded instructions and data 415, 4G82)

jr $31



Levels of Program Code
e

swap(int v[], int k)

High-level language (int temp:
. temp = v[k];
O Level of abstraction closer to problem vIk] = v[k+17;
domain VIk+1] = temp;
)
O Provides for productivity and l
portability ( Compier)
Hardware representation TP et sz, ss.a
add $2, $4,%2
o Binary digits (bits) kol
o . Sw $16, 0(%$2)
O Encoded instructions and data w318, 4(52)
jr
Hardware representation (Gesembler)

O Binary digits (bits) |
. . 00000000101000100000000100011000
O Encoded instructions and data 00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000



Components of Computer

Same components for
all kinds of computer

O Desktop, server, @c&mw
embedded Y%
Interface.m
InIOU’r/ output includes ‘_ -

O User-interface devices
Display, keyboard, mouse

\ & Datapath
Evaluating

O Storage devices perormance
Hard disk, CD/DVD, flash

O Network adapters
For communicating with other computers



Inside Processor (CPU)

Datapath

O performs operations on data

Control

O sequences datapath, memory,

Cache memory

O Small fast SRAM memory for
immediate access to data



Inside Processor (CPU)
e —

AMD Barcelona: four processor cores

HT PHY, link 1 |Slow |/0|Fuses|

128-bit FPU
[aV)
< Load/| L1 Data
=|2MB | Store | Cache [512kB
Z | Shared Exeouti o2 Core 2
2| L3 xecution 2 Cache
| Cache | Fetch/
Decode/ | L1 Instr
Branch | Cache 5
D
— Northbridge R
s P
— 1‘ H
s Y
E==: } B
L ™
X
1 £
I 5:: Core 4 Core 3
o
l_
T

HT PHY, link 4 |Slow I/O|Fuses|




The Chip Manufacturing Process

Bond die to

|

Packaged dies

.

Blank
wafers

Tested dies Tested
0 wafer
< D%EDDD < i <
package OO0X OO = “@
OO0 N
O O
Tested packaged dies
Part = IE .
tester

20to 40
processing steps

Wafer
tester

Patterned wafers




Measuring Performance
S

How to measure performance?

O Latency or response time

The time between start and completion of an
event (e.g., milliseconds for disk access)

O Bandwidth or throughput

The total amount of work done in a given time
(e.g., megabytes per second for disk transfer)



Measuring Performance
S

How to measure performance?

O Latency or response time

The time between start and completion of an
event (e.g., milliseconds for disk access)

O Bandwidth or throughput

The total amount of work done in a given time
(e.g., megabytes per second for disk transfer)

Which one is better? latency or throughput?



Measuring Performance
S

Which one is better (faster)?

Car Bus

= Delay=10m = Delay=30m
= Capacity=4p = Capacity=30p



Measuring Performance
S

Which one is better (faster)?

Car Bus
= Delay=10m = Delay=30m
= Capacity=4p = Capacity=30p
= Throughput=0.4PPM = Throughput=1PPM

It really depends on your needs (goals).



Measuring Execution Time
e

Elapsed time

O Total response time, including all aspects
O Processing, |/O, OS overhead, idle time
O Determines system performance

CPU time

O Time spent processing a given job
O Discounts | /O time, other jobs’ shares
O Comprises user CPU time and system CPU time

O Different programs are affected differently by CPU and
system performance



Clocking and Cycle Time

Operation of digital hardware governed by a constant-

rate clock
<«—Clock period—» |
Clock (cycles)
Data transfer
and computation < >< >< >

Update state <:> <:> <:>

v



Clocking and Cycle Time

Operation of digital hardware governed by a constant-

rate clock
<«—Clock period—» |
Clock (cycles)
Data transfer
and computation < >< >< >
Update state <:> <:> <:>

v

Clock period: duration of a clock cycle
O e.g. 250ps = 0.25ns = 250X 10712

Clock frequency (rate): cycles per second
O e.g., 4.0GHz = 4000MHz = 4.0 X 10°Hz



The Processor Performance

Clock cycle time (CT = 1 /clock frequency)
O Influenced by technology and pipeline

Cycles per instruction (CPI)
O Influenced by architecture

O IPC may be used instead (IPC = 1 /CPI)

Instruction count (IC)
O Influenced by ISA and compiler

CPU time = IC x CPI x CT

Performance = 1 /Execution Time



Speedup vs. Percentage

.
Speedup = old execution time / new execution time

Improvement = (new performance - old
performance)/old performance

My old and new computers run a particular
program in 80 and 60 seconds; compute the
followings

O speedup
O percentage increase in performance

O reduction in execution time



Speedup vs. Percentage

.
Speedup = old execution time / new execution time

Improvement = (new performance - old
performance)/old performance

My old and new computers run a particular
program in 80 and 60 seconds; compute the
followings

O speedup = 80/60
O percentage increase in performance = 339,

O reduction in execution time = 20/80 = 25%



Principles of Computer Design
-

Designing better computer systems requires better
utilization of resources

O Parallelism

Multiple units for executing partial or complete tasks

O Principle of locality (temporal and spatial)

Reuse data and functional units

0 Common Case

Use additional resources to improve the common case



