
MEASURING PERFORMANCE

CS/ECE 3810: Computer Organization

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ This lecture
¤ Levels of program code
¤ Chips process
¤ Performance
¤ Design principles

Below Your Program

¨ Application software
¤ Written in high-level language

¨ System software
¤ Compiler: translates HLL code to machine code
¤ Operating System: service code

n Handling input/output
n Managing memory and storage
n Scheduling tasks and sharing resources

¨ Hardware
¤ Processor, memory, I/O controllers

Levels of Program Code

¨ High-level language
¤ Level of abstraction closer to problem

domain
¤ Provides for productivity and

portability

Levels of Program Code

¨ High-level language
¤ Level of abstraction closer to problem

domain
¤ Provides for productivity and

portability

¨ Hardware representation
¤ Binary digits (bits)
¤ Encoded instructions and data

Levels of Program Code

¨ High-level language
¤ Level of abstraction closer to problem

domain
¤ Provides for productivity and

portability

¨ Hardware representation
¤ Binary digits (bits)
¤ Encoded instructions and data

¨ Hardware representation
¤ Binary digits (bits)
¤ Encoded instructions and data

Components of Computer

¨ Same components for
all kinds of computer
¤ Desktop, server,

embedded

¨ Input/output includes
¤ User-interface devices

n Display, keyboard, mouse

¤ Storage devices
n Hard disk, CD/DVD, flash

¤ Network adapters
n For communicating with other computers

Inside Processor (CPU)

¨ Datapath
¤ performs operations on data

¨ Control
¤ sequences datapath, memory,

...

¨ Cache memory
¤ Small fast SRAM memory for

immediate access to data

Inside Processor (CPU)

¨ AMD Barcelona: four processor cores

The Chip Manufacturing Process

Measuring Performance

¨ How to measure performance?

¤ Latency or response time

n The time between start and completion of an
event (e.g., milliseconds for disk access)

¤Bandwidth or throughput

n The total amount of work done in a given time
(e.g., megabytes per second for disk transfer)

Measuring Performance

¨ How to measure performance?

¤ Latency or response time

n The time between start and completion of an
event (e.g., milliseconds for disk access)

¤Bandwidth or throughput

n The total amount of work done in a given time
(e.g., megabytes per second for disk transfer)

¨ Which one is better? latency or throughput?

Measuring Performance

¨ Which one is better (faster)?

Car

§ Delay=10m

§ Capacity=4p

Bus

§ Delay=30m

§ Capacity=30p

Measuring Performance

¨ Which one is better (faster)?

Car

§ Delay=10m

§ Capacity=4p

Bus

§ Delay=30m

§ Capacity=30p

It really depends on your needs (goals).

§ Throughput=0.4PPM § Throughput=1PPM

Measuring Execution Time

¨ Elapsed time
¤ Total response time, including all aspects
¤ Processing, I/O, OS overhead, idle time
¤ Determines system performance

¨ CPU time
¤ Time spent processing a given job
¤ Discounts I/O time, other jobs’ shares
¤ Comprises user CPU time and system CPU time
¤ Different programs are affected differently by CPU and

system performance

Clocking and Cycle Time

¨ Operation of digital hardware governed by a constant-
rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

Clocking and Cycle Time

¨ Operation of digital hardware governed by a constant-
rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

¨ Clock period: duration of a clock cycle
¤ e.g., 250ps = 0.25ns = 250�10–12s

¨ Clock frequency (rate): cycles per second
¤ e.g., 4.0GHz = 4000MHz = 4.0�109Hz

The Processor Performance

¨ Clock cycle time (CT = 1/clock frequency)
¤ Influenced by technology and pipeline

¨ Cycles per instruction (CPI)
¤ Influenced by architecture
¤ IPC may be used instead (IPC = 1/CPI)

¨ Instruction count (IC)
¤ Influenced by ISA and compiler

¨ CPU time = IC x CPI x CT

¨ Performance = 1/Execution Time

Speedup vs. Percentage

¨ Speedup = old execution time / new execution time

¨ Improvement = (new performance - old
performance)/old performance

¨ My old and new computers run a particular
program in 80 and 60 seconds; compute the
followings

¤ speedup

¤ percentage increase in performance

¤ reduction in execution time

Speedup vs. Percentage

¨ Speedup = old execution time / new execution time

¨ Improvement = (new performance - old
performance)/old performance

¨ My old and new computers run a particular
program in 80 and 60 seconds; compute the
followings

¤ speedup

¤ percentage increase in performance

¤ reduction in execution time

= 80/60

= 33%

= 20/80 = 25%

Principles of Computer Design

¨ Designing better computer systems requires better
utilization of resources

¤ Parallelism
n Multiple units for executing partial or complete tasks

¤ Principle of locality (temporal and spatial)
n Reuse data and functional units

¤ Common Case
n Use additional resources to improve the common case

