MEASURING PERFORMANCE

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ This lecture
 - Levels of program code
 - Chips process
 - Performance
 - Design principles

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks and sharing resources
- Hardware
 - Processor, memory, I/O controllers

Levels of Program Code

- □ High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}
```

Levels of Program Code

- □ High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

Compiler

swap:

multi $2, $5,4
   add $2, $4,$2
   lw $15, 0($2)
   lw $16, 4($2)
   sw $16, 0($2)
   sw $15, 4($2)
   ir $31
```

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1]:
   v\lceil k+1 \rceil = temp:
   Compiler
swap:
      multi $2, $5,4
            $2. $4.$2
            $15, 0($2)
            $16, 4($2)
            $16. 0($2)
            $15, 4($2)
            $31
  Assembler
```

0000000101000100000000100011000 0000000010000010000100000100001 101011011110001000000000000000100

Components of Computer

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Inside Processor (CPU)

- Datapath
 - performs operations on data
- Control
 - sequences datapath, memory,...
- □ Cache memory
 - Small fast SRAM memory for immediate access to data

Inside Processor (CPU)

□ AMD Barcelona: four processor cores

The Chip Manufacturing Process

- □ How to measure performance?
 - Latency or response time
 - The time between start and completion of an event (e.g., milliseconds for disk access)
 - Bandwidth or throughput
 - The total amount of work done in a given time (e.g., megabytes per second for disk transfer)

- □ How to measure performance?
 - Latency or response time
 - The time between start and completion of an event (e.g., milliseconds for disk access)
 - Bandwidth or throughput
 - The total amount of work done in a given time (e.g., megabytes per second for disk transfer)
- Which one is better? latency or throughput?

□ Which one is better (faster)?

Car

- Delay=10m
- Capacity=4p

Bus

- Delay=30m
- Capacity=30p

Which one is better (faster)?

Car

- Delay=10m
- Capacity=4p
- Throughput=0.4PPM

Bus

- Delay=30m
- Capacity=30p
- Throughput=1PPM

It really depends on your needs (goals).

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- □ CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

Clocking and Cycle Time

 Operation of digital hardware governed by a constantrate clock

Clocking and Cycle Time

 Operation of digital hardware governed by a constantrate clock

- □ Clock period: duration of a clock cycle
 - \bullet e.g., 250ps = 0.25ns = 250 × 10⁻¹²s
- Clock frequency (rate): cycles per second
 - \bullet e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

The Processor Performance

- \Box Clock cycle time (CT = 1/clock frequency)
 - Influenced by technology and pipeline
- □ Cycles per instruction (CPI)
 - Influenced by architecture
 - \blacksquare IPC may be used instead (IPC = 1/CPI)
- Instruction count (IC)
 - Influenced by ISA and compiler
- \Box CPU time = IC x CPI x CT
- \Box Performance = 1/Execution Time

Speedup vs. Percentage

- □ Speedup = old execution time / new execution time
- lmprovement = (new performance old performance)/old performance
- My old and new computers run a particular program in 80 and 60 seconds; compute the followings
 - speedup
 - percentage increase in performance
 - reduction in execution time

Speedup vs. Percentage

- □ Speedup = old execution time / new execution time
- lmprovement = (new performance old performance)/old performance
- My old and new computers run a particular program in 80 and 60 seconds; compute the followings
 - \square speedup = 80/60
 - percentage increase in performance = 33%
 - reduction in execution time = 20/80 = 25%

Principles of Computer Design

- Designing better computer systems requires better utilization of resources
 - Parallelism
 - Multiple units for executing partial or complete tasks
 - Principle of locality (temporal and spatial)
 - Reuse data and functional units
 - Common Case
 - Use additional resources to improve the common case